Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tailoring light–matter–spin interactions in colloidal hetero-nanostructures

Abstract

The interplay between light and matter is the basis of many fundamental processes and various applications1. Harnessing light–matter interactions in principle allows operation of solid state devices under new physical principles: for example, the a.c. optical Stark effect (OSE) has enabled coherent quantum control schemes of spins in semiconductors, with the potential for realizing quantum devices based on spin qubits2,3,4,5. However, as the dimension of semiconductors is reduced, light–matter coupling is typically weakened, thus limiting applications at the nanoscale. Recent experiments have demonstrated significant enhancement of nanoscale light–matter interactions, albeit with the need for a high-finesse cavity6,7, ultimately preventing device down-scaling and integration. Here we report that a sizable OSE can be achieved at substantial energy detuning in a cavity-free colloidal metal–semiconductor core–shell hetero-nanostructure, in which the metal surface plasmon is tuned to resonate spectrally with a semiconductor exciton transition. We further demonstrate that this resonantly enhanced OSE exhibits polarization dependence and provides a viable mechanism for coherent ultrafast spin manipulation within colloidal nanostructures. The plasmon–exciton resonant nature further enables tailoring of both OSE and spin manipulation by tuning plasmon resonance intensity and frequency. These results open a pathway for tailoring light–matter–spin interactions through plasmon–exciton resonant coupling in a judiciously engineered nanostructure, and offer a basis for future applications in quantum information processing at the nanoscale. More generally, integrated nanostructures with resonantly enhanced light–matter interactions should serve as a test bed for other emerging fields, including nano-biophotonics and nano-energy8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Au–CdSe as a hetero-core–shell nanostructure, integrating a surface plasmon of the Au core with an exciton of the monocrystalline CdSe shell.
Figure 2: Tunable plasmon–exciton resonantly enhanced OSE and its polarization dependence in Au–CdSe nanostructures.
Figure 3: Ultrafast coherent spin manipulation in Au–CdSe enacted by resonantly enhanced OSE.
Figure 4: Dependence of ultrafast spin manipulation on tipping pulse intensity and the size of the Au core.

Similar content being viewed by others

References

  1. Weiner, J. & Ho, P.-T. Light-matter Interaction: Fundamentals and Applications (Wiley & Sons, 2003)

    Book  Google Scholar 

  2. Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, 2002)

    Book  Google Scholar 

  3. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Dubowski, J. J. &, Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology (Springer, 2006)

    Book  Google Scholar 

  9. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Joffre, M., Hulin, D., Migus, A. & Combescot, M. Laser-induced exciton splitting. Phys. Rev. Lett. 62, 74–77 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Unold, T., Mueller, K., Lienau, C., Elaesser, T. & Wieck, A. D. Optical Stark effect in a quantum dot: ultrafast control of single exciton. Phys. Rev. Lett. 92, 157401 (2004)

    Article  ADS  Google Scholar 

  12. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  13. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Vasa, P. et al. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Yang, Y., Shi, J., Chen, H., Dai, S. & Liu, Y. Enhanced off-resonance optical nonlinearities of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films. Chem. Phys. Lett. 370, 1–6 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Durach, M., Rusina, A., Klimov, V. I. & Stockman, M. I. Nanoplasmonic renormalization and enhancement of Coulomb interactions. Proc. SPIE 7032, 70320J (2008)

    Article  ADS  Google Scholar 

  17. Zhang, W., Govorov, A. O. & Bryant, G. W. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 97, 146804 (2006)

    Article  ADS  Google Scholar 

  18. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634–1638 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Battaglia, D., Li, J. J., Wang, Y. & Peng, X. Colloidal two-dimensional systems: CdSe quantum shells and wells. Angew. Chem. Int. Edn 42, 5035–5039 (2003)

    Article  CAS  Google Scholar 

  20. Tsuda, S. & Brito Cruz, C. H. Femtosecond dynamics of the optical Stark effect in semiconductor-doped glass. Appl. Phys. Lett. 68, 1093–1095 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Gupta, J. A. & Awschalom, D. D. Spin precession and the optical Stark effect in a semiconductor-doped glass. Phys. Rev. B 63, 085303 (2001)

    Article  ADS  Google Scholar 

  22. Pryor, C. E. & Flatté, M. E. Predicted ultrafast single-qubit operations in semiconductor quantum dots. Appl. Phys. Lett. 88, 233108 (2006)

    Article  ADS  Google Scholar 

  23. Gupta, J. A. et al. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002)

    Article  ADS  Google Scholar 

  24. Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Berezovsky, J. et al. Spin dynamics and level structure of quantum-dot quantum wells. Phys. Rev. B 71, 081309 (2005)

    Article  ADS  Google Scholar 

  26. Berezovsky, J. et al. Initialization and read-out of spins in coupled core-shell quantum dots. Nature Phys. 2, 831–834 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Janben, N., Whitaker, K. M., Gamelin, D. R. & Bratschitsch, R. Ultrafast spin dynamics in colloidal ZnO quantum dots. Nano Lett. 8, 1991–1994 (2008)

    Article  ADS  Google Scholar 

  28. Beaulac, R., Schneider, L., Archer, P. I., Bacher, G. & Gamelin, D. R. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325, 973–976 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Lewis, N. S. Toward cost-effective energy use. Science 315, 798–801 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from an ONR YIP award (N000140710787), an NSF CAREER award (DMR-0547194), and a Beckman YIP grant (0609259093). We also thank P. Kolb and A. O. Govorov for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. performed all materials synthesis, and some of characterizations and measurements. Y.T. and K.L. contributed to sample characterizations. M.O. formulated the idea, performed some of measurements, wrote the manuscript, and supervised and coordinated the research. All co-authors participated in discussion and manuscript writing.

Corresponding author

Correspondence to Min Ouyang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S11 with legends, Supplementary Discussions and References. (PDF 4622 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Tang, Y., Lee, K. et al. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010). https://doi.org/10.1038/nature09150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09150

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing