Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualizing and controlling vibrational wave packets of single molecules

Abstract

The active steering of the pathways taken by chemical reactions and the optimization of energy conversion processes1,2,3 provide striking examples of the coherent control of quantum interference through the use of shaped laser pulses. Experimentally, coherence is usually established by synchronizing a subset of molecules in an ensemble4,5,6,7 with ultra-short laser pulses8. But in complex systems where even chemically identical molecules exist with different conformations and in diverse environments, the synchronized subset will have an intrinsic inhomogeneity that limits the degree of coherent control that can be achieved. A natural—and, indeed, the ultimate—solution to overcoming intrinsic inhomogeneities is the investigation of the behaviour of one molecule at a time. The single-molecule approach9,10 has provided useful insights into phenomena as diverse as biomolecular interactions11,12,13, cellular processes14 and the dynamics of supercooled liquids15 and conjugated polymers16. Coherent state preparation of single molecules has so far been restricted to cryogenic conditions17, whereas at room temperature only incoherent vibrational relaxation pathways have been probed18. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a high degree of control, and expect that the approach can be extended to achieve single-molecule coherent control in other complex inhomogeneous systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrafast coherent excitation of single molecules.
Figure 2: Single-molecule wave-packet interference.
Figure 3: Phase control of single-molecule wave packets.
Figure 4: Single-molecule time-phase coherent excitation maps.

Similar content being viewed by others

References

  1. Rabitz, H. et al. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Bandrauk, A. D., Fujimura, Y. & Gordon, R. J. Laser Control and Manipulation of Molecules (Oxford Univ. Press, 2002)

    Book  Google Scholar 

  3. Dantus, M. & Lozovoy, V. V. Experimental coherent laser control of physicochemical processes. Chem. Rev. 104, 1813–1859 (2004)

    Article  CAS  Google Scholar 

  4. Herek, J. L. et al. Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Kuroda, D. G. et al. Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency. Science 326, 263–267 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000)

    Article  CAS  Google Scholar 

  9. Basche, T. et al. Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, 1996)

    Book  Google Scholar 

  10. Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002)

    Article  CAS  Google Scholar 

  11. Michalet, X., Weiss, S. & Jäger, M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106, 1785–1813 (2006)

    Article  CAS  Google Scholar 

  12. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Elf, J., Li, G. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Zondervan, R. et al. Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc. Natl Acad. Sci. USA 104, 12628–12633 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Barbara, P. F. et al. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005)

    Article  CAS  Google Scholar 

  17. Gerhardt, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A 79, 011402 (2009)

    Article  ADS  Google Scholar 

  18. Van Dijk, E. M. H. P. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005)

    Article  ADS  Google Scholar 

  19. Shapiro, M. & Brumer, P. Coherent control of molecular dynamics. Rep. Prog. Phys. 66, 859–942 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Judson, R. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Bardeen, C. J. et al. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Amstrup, B. et al. The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good. J. Phys. Chem. 95, 8019–8027 (1991)

    Article  CAS  Google Scholar 

  27. Hornung, T., Motzkus, M. & De Vivie-Riedle, R. Teaching optimal control theory to distil robust pulses even under experimental constraints. Phys. Rev. A 65, 021403 (2002)

    Article  ADS  Google Scholar 

  28. Scherer, N. F. et al. Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses. J. Chem. Phys. 95, 1487–1511 (1991)

    Article  ADS  CAS  Google Scholar 

  29. Avlasevich, Y. S. et al. Novel core-expanded rylenebis(dicarboximide) dyes bearing pentacene units: facile synthesis and photophysical properties. Chem. Eur. J. 13, 6555–6561 (2007)

    Article  CAS  Google Scholar 

  30. Macklin, J. J. et al. Imaging and time-resolved spectroscopy of single molecules. Science 272, 255–258 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Fendel from Menlo Systems for lending us an Octavius system and for technical assistance. We are grateful to Biophotonic Solutions Inc. for collaborating with us in developing the double-pass pulse shaper. We appreciate discussions with A. G. Curto and M. Castro López. This work was supported by the ‘Molecular walker’ project of the Koerber foundation (Hamburg) and by the Spanish Ministry of Science and Innovation (CSD2007-046-NanoLight.es and MAT2006-08184).

Author information

Authors and Affiliations

Authors

Contributions

D.B., F.D.S. and N.F.v.H. conceived and designed the experiments. D.B., F.K. and R.H. constructed the experimental set-up. D.B. and F.D.S. carried out the measurements and analysis. D.B., F.D.S. and T.H.T. performed control experiments. Y.A. and K.M. provided the fluorescent molecules. F.D.S., D.B. and N.F.v.H. wrote the manuscript.

Corresponding authors

Correspondence to Fernando D. Stefani or Niek F. van Hulst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinks, D., Stefani, F., Kulzer, F. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010). https://doi.org/10.1038/nature09110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09110

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing