Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Principles of stop-codon reading on the ribosome

Abstract

In termination of protein synthesis, the bacterial release factors RF1 and RF2 bind to the ribosome through specific recognition of messenger RNA stop codons and trigger hydrolysis of the bond between the nascent polypeptide and the transfer RNA at the peptidyl-tRNA site, thereby releasing the newly synthesized protein. The release factors are highly specific for a U in the first stop-codon position1 and recognize different combinations of purines in the second and third positions, with RF1 reading UAA and UAG and RF2 reading UAA and UGA. With recently determined crystal structures of termination complexes2,3,4, it has become possible to decipher the energetics of stop-codon reading by computational analysis and to clarify the origin of the high release-factor binding accuracy. Here we report molecular dynamics free-energy calculations on different cognate and non-cognate termination complexes. The simulations quantitatively explain the basic principles of decoding in all three codon positions and reveal the key elements responsible for specificity of the release factors. The overall reading mechanism involves hitherto unidentified interactions and recognition switches that cannot be described in terms of a tripeptide anticodon model. Further simulations of complexes with tRNATrp, the tRNA recognizing the triplet codon for Trp, explain the observation of a ‘leaky’ stop codon5 and highlight the fundamentally different third position reading by RF2, which leads to a high stop-codon specificity with strong discrimination against the Trp codon. The simulations clearly illustrate the versatility of codon reading by protein, which goes far beyond tRNA mimicry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stop-codon specificity of RF1 and RF2 in termination.
Figure 2: First-position reading.
Figure 3: Second-position reading.
Figure 4: Third-position reading.

Similar content being viewed by others

References

  1. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl Acad. Sci. USA 97, 2046–2051 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl Acad. Sci. USA 105, 19684–19689 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Parker, J. Errors and alternatives in reading the universal genetic-code. Microbiol. Rev. 53, 273–298 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jørgensen, F., Adamski, F. M., Tate, W. P. & Kurland, C. G. Release factor-dependent false stops are infrequent in Escherichia coli . J. Mol. Biol. 230, 41–50 (1993)

    Article  Google Scholar 

  7. Thompson, R. C. & Stone, P. J. Proofreading of codon-anticodon interaction on ribosomes. Proc. Natl Acad. Sci. USA 74, 198–202 (1977)

    Article  ADS  CAS  Google Scholar 

  8. Ruusala, T., Ehrenberg, M. & Kurland, C. G. Is there proofreading during polypeptide-synthesis. EMBO J. 1, 741–745 (1982)

    Article  CAS  Google Scholar 

  9. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNA, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Kristensen, O., Laurberg, M., Liljas, A. & Selmer, M. Is tRNA binding or tRNA mimicry mandatory for translation factors? Curr. Protein Pept. Sci. 3, 133–141 (2002)

    Article  CAS  Google Scholar 

  11. Ito, K., Uno, M. & Nakamura, Y. A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Frolova, L. Y. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999)

    Article  CAS  Google Scholar 

  13. Rawat, U. B. S. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Klaholz, B. P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005)

    Article  CAS  Google Scholar 

  16. Trobro, S. & Åqvist, J. A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol. Cell 27, 758–766 (2007)

    Article  CAS  Google Scholar 

  17. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Almlöf, M., Andér, M. & Åqvist, J. Energetics of codon-anticodon recognition on the small ribosomal subunit. Biochemistry 46, 200–209 (2007)

    Article  Google Scholar 

  19. Uno, M., Ito, K. & Nakamura, Y. Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors. Proc. Natl Acad. Sci. USA 99, 1819–1824 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Hirsh, D. & Gold, L. Translation of UGA triplet in vitro by tryptophan transfer RNAs. J. Mol. Biol. 58, 459–468 (1971)

    Article  CAS  Google Scholar 

  22. Zavialov, A. V., Mora, L., Buckingham, R. H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002)

    Article  CAS  Google Scholar 

  23. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996)

    Article  CAS  Google Scholar 

  24. Adamski, F. M., Mccaughan, K. K., Jorgensen, F., Kurland, C. G. & Tate, W. P. The concentration of polypeptide-chain release factor-1 and factor-2 at different growth-rates of Escherichia coli . J. Mol. Biol. 238, 302–308 (1994)

    Article  CAS  Google Scholar 

  25. Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 22, 245–268 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. Marelius, J., Kolmodin, K., Feierberg, I. & Åqvist, J. Q: a molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. J. Mol. Graph. Model. 16, 213–225, 261 (1998)

    Article  CAS  Google Scholar 

  27. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  28. Trobro, S. & Åqvist, J. Mechanism of the translation termination reaction on the ribosome. Biochemistry 48, 11296–11303 (2009)

    Article  CAS  Google Scholar 

  29. MacKerell, A. D., Wiorkiewicz-Kuczera, J. & Karplus, M. An all-atom empirical energy function for the simulation of nucleic-acids. J. Am. Chem. Soc. 117, 11946–11975 (1995)

    Article  CAS  Google Scholar 

  30. King, G. & Warshel, A. A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys. 91, 3647–3661 (1989)

    Article  ADS  CAS  Google Scholar 

  31. Trobro, S. & Åqvist, J. Mechanism of peptide bond synthesis on the ribosome. Proc. Natl Acad. Sci. USA 102, 12395–12400 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Lee, F. S. & Warshel, A. A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J. Chem. Phys. 97, 3100–3107 (1992)

    Article  ADS  CAS  Google Scholar 

  33. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Support from the Swedish Research Council is gratefully acknowledged. We thank M. Ehrenberg for discussions and M. Laurberg, H. Noller, A. Weixlbaumer and V. Ramakrishnan for sending us their atomic coordinates before release and for providing electron density maps.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and M.A. performed the simulations. All authors analysed the data and prepared the manuscript.

Corresponding author

Correspondence to Johan Åqvist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-4 with legends. (PDF 551 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sund, J., Andér, M. & Åqvist, J. Principles of stop-codon reading on the ribosome. Nature 465, 947–950 (2010). https://doi.org/10.1038/nature09082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09082

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing