Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain function and chromatin plasticity

Abstract

The characteristics of epigenetic control, including the potential for long-lasting, stable effects on gene expression that outlive an initial transient signal, could be of singular importance for post-mitotic neurons, which are subject to changes with short- to long-lasting influence on their activity and connectivity. Persistent changes in chromatin structure are thought to contribute to mechanisms of epigenetic inheritance. Recent advances in chromatin biology offer new avenues to investigate regulatory mechanisms underlying long-lasting changes in neurons, with direct implications for the study of brain function, behaviour and diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms involved in chromatin modifications.
Figure 2: Contribution of various chromatin-remodelling events throughout the life of an organism.

Similar content being viewed by others

References

  1. Squire, L. R. Memory and Brain (Oxford Univ. Press, 1987).

    Google Scholar 

  2. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  CAS  Google Scholar 

  3. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007). References 2 and 3 are interesting reviews on the meaning and potential mechanisms of epigenetic regulation.

    Article  CAS  PubMed  Google Scholar 

  4. Kramer, J. M. & van Bokhoven, H. Genetic and epigenetic defects in mental retardation. Int. J. Biochem. Cell Biol. 41, 96–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ramocki, M. B. & Zoghbi, H. Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912–918 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002). This paper presents an early mechanistic analysis of memory formation and the associated chromatin modifications.

    Article  CAS  PubMed  Google Scholar 

  7. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA 101, 6033–6038 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008). This paper provides an interesting mechanistic analysis of the function of MECP2 in the hypothalamus.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin Caballero, I., Hansen, J., Leaford, D., Pollard, S. & Hendrich, B. D. The methyl-CpG binding proteins Mecp2, Mbd2 and Kaiso are dispensable for mouse embryogenesis, but play a redundant function in neural differentiation. PLoS ONE 4, e4315 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Feng, J. & Fan, G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol. 89, 67–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Jin, Y. H. et al. Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet. 4, e1000053 (2008).

    Article  PubMed  PubMed Central  MathSciNet  CAS  Google Scholar 

  20. Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554–558 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45 . Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009). This study identifies an intriguing new nucleotide modification in the brain.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flavell, S. W. & Greenberg, M. E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24, 5603–5610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koshibu, K. et al. Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29, 13079–13089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Guan, J. S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ptak, C. & Petronis, A. Epigenetics and complex disease: from etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol. 48, 257–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaefer, A. et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64, 678–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev. 16, 743–752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Radman-Livaja, M., Liu, C. L., Friedman, N., Schreiber, S. L. & Rando, O. J. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet. 6, e1000837 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mohn, F. et al. Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008). This paper provides an insightful analysis of the changes in DNA and histone H3 methylation at promoter regions during cell-fate determination and early differentiation of neuronal progenitors.

    Article  CAS  PubMed  Google Scholar 

  42. Wong, A. H., Gottesman, I. I. & Petronis, A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14, R11–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Tamashiro, K. L. et al. Phenotype of cloned mice: development, behavior, and physiology. Exp. Biol. Med. 228, 1193–1200 (2003).

    Article  CAS  Google Scholar 

  45. Weksberg, R. et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 11, 1317–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010). This paper provides an interesting analysis of variability in the gene regulatory networks of genetically identical animals.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francis, D. D., Szegda, K., Campbell, G., Martin, W. D. & Insel, T. R. Epigenetic sources of behavioral differences in mice. Nature Neurosci. 6, 445–446 (2003). This study is a remarkable demonstration of the effect of perinatal environment on behavioural traits.

    Article  CAS  PubMed  Google Scholar 

  49. McMillen, I. C. & Robinson, J. S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Levine, S. Infantile experience and resistance to physiological stress. Science 126, 405 (1957).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Denenberg, V. H., Brumaghim, J. T., Haltmeyer, G. C. & Zarrow, M. X. Increased adrenocortical activity in the neonatal rat following handling. Endocrinology 81, 1047–1052 (1967).

    Article  CAS  PubMed  Google Scholar 

  55. Meaney, M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neurosci. 12, 1559–1566 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Cirulli, F. et al. Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci. Biobehav. Rev. 33, 573–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Keverne, E. B. Genomic imprinting and the evolution of sex differences in mammalian reproductive strategies. Adv. Genet. 59, 217–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet. 4, 359–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Wolf, J. B. & Hager, R. A maternal–offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 4, e380 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Fowden, A. L., Sibley, C., Reik, W. & Constancia, M. Imprinted genes, placental development and fetal growth. Horm. Res. 65 (suppl. 3), 50–58 (2006).

    CAS  PubMed  Google Scholar 

  66. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Luedi, P. P., Hartemink, A. J. & Jirtle, R. L. Genome-wide prediction of imprinted murine genes. Genome Res. 15, 875–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davies, W. et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nature Genet. 37, 625–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Raefski, A. S. & O'Neill, M. J. Identification of a cluster of X-linked imprinted genes in mice. Nature Genet. 37, 620–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Wilkinson, L. S., Davies, W. & Isles, A. R. Genomic imprinting effects on brain development and function. Nature Rev. Neurosci. 8, 832–843 (2007).

    Article  CAS  Google Scholar 

  71. Kozlov, S. V. et al. The imprinted gene Magel2 regulates normal circadian output. Nature Genet. 39, 1266–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet. 7, 395–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Lim, A. L. & Ferguson-Smith, A. C. Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy. Semin. Cell Dev. Biol. 21, 201–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Patisaul, H. B. & Adewale, H. B. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front. Behav. Neurosci. 3, 10 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11045–11054 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Whitelaw, N. C. & Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev. 18, 273–279 (2008). This insightful review discusses the phenomenon of transgenerational epigenetic inheritance.

    Article  CAS  PubMed  Google Scholar 

  77. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Matzke, M., Kanno, T., Huettel, B., Daxinger, L. & Matzke, A. J. RNA-directed DNA methylation and Pol IVb in Arabidopsis . Cold Spring Harb. Symp. Quant. Biol. 71, 449–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro . Cell 137, 110–122 (2009). This study is a unique demonstration of the retention of a chromatin modification throughout cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell 136, 551–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, A. H. et al. A centrosomal Cdc20–APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deato, M. D. & Tjian, R. Switching of the core transcription machinery during myogenesis. Genes Dev. 21, 2137–2149 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Bustos, C. et al. Tissue-specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2, 7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Gehring, M., Reik, W. & Henikoff, S. DNA demethylation by DNA repair. Trends Genet. 25, 82–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Jost, J. P. et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res. 29, 4452–4461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Allis, C. D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007). References 96 and 97 are insightful reviews on the functional significance of individual, or patterns of, histone modifications, with a debate on a revised histone-code hypothesis.

    Article  CAS  Google Scholar 

  98. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Hellmiss for the original illustrations, F. Meale for help with the manuscript, and N. Francis, M. Ptashne, D. Schubeler and members of the laboratory for insights and discussions. My research is supported by the Howard Hughes Medical Institute, the Klarman Family Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Dulac.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulac, C. Brain function and chromatin plasticity. Nature 465, 728–735 (2010). https://doi.org/10.1038/nature09231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09231

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing