Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nearby galaxies as pointers to a better theory of cosmic evolution

Abstract

The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding Universe. However, the properties of nearby galaxies that can be observed in greatest detail suggest that a better theory would describe a mechanism by which matter is more rapidly gathered into galaxies and groups of galaxies. This more rapid growth occurs in some theoretical ideas now under discussion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galaxies at radial distances 1 <  D  < 8 Mpc from the centre of the Local Group of galaxies.
Figure 2: A galaxy typical of those found in low-density regions.
Figure 3: Ongoing rearrangement of matter in the central luminous regions of galaxies.
Figure 4: Measures of early-type galaxies in more and less crowded environments.

Similar content being viewed by others

References

  1. Peebles, P. J. E., Page, L. A. & Partridge, R. B. Finding the Big Bang (Cambridge Univ. Press, 2009)Section 5.4 of this book reviews the network of cosmological tests; the earlier chapters describe the origins of principal tests.

    Book  Google Scholar 

  2. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Mathis, H. & White, S. D. M. Voids in the simulated local Universe. Mon. Not. R. Astron. Soc. 337, 1193–1206 (2002)

    Article  ADS  Google Scholar 

  4. Peebles, P. J. E. Galaxies as a cosmological test. Nuovo Cimento B 122, 1035–1042 (2007)

    ADS  Google Scholar 

  5. Tikhonov, A. V. & Klypin, A. The emptiness of voids: yet another overabundance problem for the Λ cold dark matter model. Mon. Not. R. Astron. Soc. 395, 1915–1924 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Stanonik, K. et al. Polar disk galaxy found in wall between voids. Astrophys. J. 696, L6–L9 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Gottlöber, S., Łokas, E. L., Klypin, A. & Hoffman, Y. The structure of voids. Mon. Not. R. Astron. Soc. 344, 715–724 (2003)

    Article  ADS  Google Scholar 

  8. Zwaan, M., Meyer, M. & Staveley-Smith, L. The velocity function of gas-rich galaxies. Mon. Not. R. Astron. Soc. 403, 1969–1977 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Vale, A. & Ostriker, J. P. The non-parametric model for linking galaxy luminosity with halo/subhalo mass. Mon. Not. R. Astron. Soc. 371, 1173–1187 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Kravtsov, A. V. Dark matter substructure and dwarf galactic satellites. Adv. Astron. 2010, 1–22 (2010)

    Article  Google Scholar 

  11. Tinker, J. L. & Conroy, C. The void phenomenon explained. Astrophys. J. 691, 633–639 (2009)

    Article  ADS  Google Scholar 

  12. van den Bergh, S. The outer fringes of the Local Group. Astron. J. 107, 1328–1332 (1994)

    Article  ADS  Google Scholar 

  13. Grcevich, J. & Putman, M. E. H I in Local Group dwarf galaxies and stripping by the galactic halo. Astrophys. J. 696, 385–395 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Boomsma, R., Oosterloo, T. A., Fraternali, F., van der Hulst, J. M. & Sancisi, R. HI holes and high-velocity clouds in the spiral galaxy NGC 6946. Astron. Astrophys. 490, 555–570 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Sheth, R. K. & van de Weygaert, R. A hierarchy of voids: much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517–538 (2004)

    Article  ADS  Google Scholar 

  16. Kormendy, J. & Fisher, D. B. in Formation and Evolution of Galaxy Disks (eds Funes, J. G. & Corsini, E. M.) 297–308 (Astronomical Society of the Pacific, 2008)This paper provides a succinct explanation of the pure disk phenomenon.

    Google Scholar 

  17. Kormendy, J. & Kennicutt, R. C. Jr. Secular evolution and the formation of pseudobulges in disk galaxies. Annu. Rev. Astron. Astrophys. 42, 603–683 (2004)

    Article  ADS  Google Scholar 

  18. Falcón-Barroso, J. et al. The SAURON project - VII. Integral-field absorption and emission-line kinematics of 24 spiral galaxy bulges. Mon. Not. R. Astron. Soc. 369, 529–566 (2006)

    Article  ADS  Google Scholar 

  19. Steinmetz, M. & Navarro, J. F. The hierarchical origin of galaxy morphologies. N. Astron. 7, 155–160 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Parry, O. H., Eke, V. R. & Frenk, C. S. Galaxy morphology in the ΛCDM cosmology. Mon. Not. R. Astron. Soc. 396, 1972–1984 (2009)

    Article  ADS  Google Scholar 

  21. Nagamine, K., Ostriker, J. P., Fukugita, M. & Cen, R. The history of cosmological star formation: three independent approaches and a critical test using the extragalactic background light. Astrophys. J. 653, 881–893 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Hopkins, P. F., Cox, T. J., Younger, J. D. & Hernquist, L. How do disks survive mergers? Astrophys. J. 691, 1168–1201 (2009)

    Article  ADS  Google Scholar 

  23. Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010)This paper describes state-of-the-art simulations of the formation of spiral galaxies.

    Article  ADS  CAS  Google Scholar 

  24. Scannapieco, C., White, S. D. M., Springel, V. & Tissera, P. B. The formation and survival of discs in a ΛCDM universe. Mon. Not. R. Astron. Soc. 396, 696–708 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Scannapieco, C., Gadotti, D. A., Jonsson, P. & White, S. D. M. An observer’s view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges. Mon. Not. R. Astron. Soc. (submitted); preprint at 〈http://arxiv.org/abs/1001.4890〉 (2010)

  26. Wyse, R. F. G. The star-formation history of the Milky Way galaxy. Proc. IAU 4 (S258) 11–22 (2008)

    Article  Google Scholar 

  27. Bernardi, M., Nichol, R. C., Sheth, R. K., Miller, C. J. & Brinkmann, J. Evolution and environment of early-type galaxies. Astron. J. 131, 1288–1317 (2006)This paper presents an example of the insensitivity of gross properties of galaxies to environment.

    Article  ADS  CAS  Google Scholar 

  28. Faber, S. M. & Jackson, R. E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 204, 668–683 (1976)

    Article  ADS  CAS  Google Scholar 

  29. Tully, R. B. & Fisher, J. R. A new method of determining distances to galaxies. Astron. Astrophys. 54, 661–673 (1977)

    ADS  Google Scholar 

  30. Visvanathan, N. & Sandage, A. The color-absolute magnitude relation for E and S0 galaxies. I. Calibration and tests for universality using Virgo and eight other nearby clusters. Astrophys. J. 216, 214–226 (1977)

    Article  ADS  Google Scholar 

  31. Kormendy, J. Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. Astrophys. J. 218, 333–346 (1977)

    Article  ADS  Google Scholar 

  32. Szomoru, A., van Gorkom, J. H., Gregg, M. D. & Strauss, M. A. An HI survey of the Boötes void. II. The analysis. Astron. J. 111, 2150–2166 (1996)

    Article  ADS  CAS  Google Scholar 

  33. Sage, L. J., Weistrop, D., Cruzen, S. & Kompe, C. Molecular gas and star formation within galaxies in the Boötes void. Astron. J. 114, 1753–1757 (1997)

    Article  ADS  CAS  Google Scholar 

  34. Hogg, D. W. et al. The dependence on environment of the color-magnitude relation of galaxies. Astrophys. J. 601, L29–L32 (2004)This paper presents another example of the insensitivity of gross properties of galaxies to environment.

    Article  ADS  Google Scholar 

  35. Park, C., Choi, Y.-Y., Vogeley, M. S., Gott, J. R. I. & Blanton, M. R. Environmental dependence of properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 658, 898–916 (2007)

    Article  ADS  Google Scholar 

  36. Nair, P. B., van den Bergh, S. & Abraham, R. G. The environmental dependence of the luminosity-size relation for galaxies. Astrophys. J. 715, 606–622 (2010)

    Article  ADS  Google Scholar 

  37. Disney, M. J. et al. Galaxies appear simpler than expected. Nature 455, 1082–1084 (2008)

    Article  ADS  CAS  Google Scholar 

  38. Blanton, M. R. & Moustakas, J. Physical properties and environments of nearby galaxies. Annu. Rev. Astron. Astrophys. 47, 159–210 (2009)

    Article  ADS  CAS  Google Scholar 

  39. Tremaine, S. D. & Richstone, D. O. A test of a statistical model for the luminosities of bright cluster galaxies. Astrophys. J. 212, 311–316 (1977)

    Article  ADS  Google Scholar 

  40. Lin, Y.-T., Ostriker, J. P. & Miller, C. J. A new test of the statistical nature of the brightest cluster galaxies. Astrophys. J. (submitted); preprint at 〈http://arxiv.org/abs/0904.3098〉 (2009)

  41. Ostriker, J. P. & Tremaine, S. D. Another evolutionary correction to the luminosity of giant galaxies. Astrophys. J. 202, L113–L117 (1975)

    Article  ADS  Google Scholar 

  42. Toomre, A. in The Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B.) 401–426 (Yale Univ. Observatory, 1977)

    Google Scholar 

  43. Schweizer, F. Colliding and merging galaxies. I. Evidence for the recent merging of two disk galaxies in NGC 7252. Astrophys. J. 252, 455–460 (1982)

    Article  ADS  Google Scholar 

  44. Naab, T. & Ostriker, J. P. Are disk galaxies the progenitors of giant ellipticals? Astrophys. J. 690, 1452–1462 (2009)

    Article  ADS  Google Scholar 

  45. Postman, M. & Geller, M. J. The morphology-density relation: the group connection. Astrophys. J. 281, 95–99 (1984)

    Article  ADS  Google Scholar 

  46. Tal, T., van Dokkum, P. G., Nelan, J. & Bezanson, R. The frequency of tidal features associated with nearby luminous elliptical galaxies from a statistically complete sample. Astron. J. 138, 1417–1427 (2009)

    Article  ADS  Google Scholar 

  47. Gao, L., Loeb, A., Peebles, P. J. E., White, S. D. M. & Jenkins, A. Early formation and late merging of the giant galaxies. Astrophys. J. 614, 17–25 (2004)

    Article  ADS  Google Scholar 

  48. Bezanson, R. et al. The relation between compact, quiescent high-redshift galaxies and massive nearby elliptical galaxies: evidence for hierarchical, inside-out growth. Astrophys. J. 697, 1290–1298 (2009)

    Article  ADS  Google Scholar 

  49. Förster Schreiber, N. M. et al. The SINS Survey: SINFONI integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

    Article  ADS  Google Scholar 

  50. Wong, O. I. et al. The Northern HIPASS catalogue – data presentation, completeness and reliability measures. Mon. Not. R. Astron. Soc. 371, 1855–1864 (2006)

    Article  ADS  CAS  Google Scholar 

  51. Martin, A. M. et al. The Arecibo Legacy Fast ALFA Survey. VIII. H I source catalog of the anti-Virgo region at δ = +25°. Astrophys. J. Suppl. Ser. 183, 214–224 (2009)

    Article  ADS  CAS  Google Scholar 

  52. Dvali, G., Gabadadze, G. & Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208–214 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  53. Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. & Weltman, A. Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004)

    Article  ADS  Google Scholar 

  54. Silvestri, A. & Trodden, M. Approaches to understanding cosmic acceleration. Rep. Prog. Phys. 72, 096901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  55. Farrar, G. R. & Peebles, P. J. E. Interacting dark matter and dark energy. Astrophys. J. 604, 1–11 (2004)

    Article  ADS  CAS  Google Scholar 

  56. Nusser, A., Gubser, S. S. & Peebles, P. J. Structure formation with a long-range scalar dark matter interaction. Phys. Rev. D 71, 083505 (2005)

    Article  ADS  Google Scholar 

  57. Zhang, P., Liguori, M., Bean, R. & Dodelson, S. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys. Rev. Lett. 99, 141302 (2007)

    Article  ADS  Google Scholar 

  58. Hui, L., Nicolis, A. & Stubbs, C. W. Equivalence principle implications of modified gravity models. Phys. Rev. D 80, 104002 (2009)

    Article  ADS  Google Scholar 

  59. Keselman, J. A., Nusser, A. & Peebles, P. J. E. Galaxy satellites and the weak equivalence principle. Phys. Rev. D 80, 063517 (2009)

    Article  ADS  Google Scholar 

  60. Hellwing, W. A. & Juszkiewicz, R. Dark matter gravitational clustering with a long-range scalar interaction. Phys. Rev. D 80, 083522 (2009)

    Article  ADS  Google Scholar 

  61. Martino, M. C. & Sheth, R. K. Density profiles and voids in modified gravity models. Preprint at 〈http://arxiv.org/abs/0911.1829〉 (2009)

  62. Keselman, J. A., Nusser, A. & Peebles, P. J. E. Cosmology with equivalence principle breaking in the dark sector galaxy. Phys. Rev. D 81, 063521 (2010)

    Article  ADS  Google Scholar 

  63. de Vaucouleurs, G. Evidence for a local supergalaxy. Astron. J. 58, 30–32 (1953)

    Article  ADS  Google Scholar 

  64. Karachentsev, I. D., Karachentseva, V. E., Huchtmeier, W. K. & Makarov, D. I. A catalog of neighboring galaxies. Astron. J. 127, 2031–2068 (2004)

    Article  ADS  CAS  Google Scholar 

  65. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009)

    Article  ADS  Google Scholar 

  66. Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Virgo Consortium for their cosmological simulations and to J. Wang, who produced Fig. 3 from these simulations. We have benefited from advice from F. Governato, A. Klypin, J. Kormendy, J. Silk, S. van den Bergh, J. van Gorkom, S. White and R. Wyse. This work was supported in part by The Israel Science Foundation (grant no. 303/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. E. Peebles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peebles, P., Nusser, A. Nearby galaxies as pointers to a better theory of cosmic evolution. Nature 465, 565–569 (2010). https://doi.org/10.1038/nature09101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09101

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing