Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane

Abstract

Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria1,2,3, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme4,5. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent Vmax (maximum rate) and Km (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate6,7,8. This result supports the hypothesis of ‘reverse methanogenesis’4,9 and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C–H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C–H activation, currently an area of great interest in chemistry10,11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reverse methanogenesis.
Figure 2: Incorporation of 13 C from 13 CH 4 into the methyl group of CH 3 -S-CoM as catalysed by purified MCR-I from M. marburgensis at 60 °C.
Figure 3: Formation of 13 CH 3 -S-CoM (in μmol) after 30 min at 60 °C.

Similar content being viewed by others

References

  1. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009)

    Article  CAS  Google Scholar 

  2. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009)

    Article  CAS  Google Scholar 

  3. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007)

    Article  CAS  Google Scholar 

  4. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Krüger, M. et al. A conspicuous nickel protein in microbial mats that oxidise methane anaerobically. Nature 426, 878–881 (2003)

    Article  ADS  Google Scholar 

  6. Holler, T. et al. Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro . Environ. Microbiol. Rep. 1, 370–376 (2009)

    Article  CAS  Google Scholar 

  7. Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A. & Widdel, F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9, 187–196 (2007)

    Article  CAS  Google Scholar 

  8. Nauhaus, K., Boetius, A., Krüger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296–305 (2002)

    Article  CAS  Google Scholar 

  9. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment—evidence for a methanogen-sulphate reducer consortium. Glob. Biogeochem. Cycles 8, 451–463 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Crabtree, R. H. Organometallic alkane CH activation. J. Organomet. Chem. 689, 4083–4091 (2004)

    Article  CAS  Google Scholar 

  11. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Schroder, D. & Schwarz, H. Gas-phase activation of methane by ligated transition-metal cations. Proc. Natl Acad. Sci. USA 105, 18114–18119 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Shilov, A. E. & Shul'pin, G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes Vol. 21 (Springer, 2000)

    Google Scholar 

  14. Jaun, B. & Thauer, R. K. Methyl-coenzyme M reductase and its nickel corphin coenzyme F430 in methanogenic Archaea. Metal Ions Life Sci. 2, 323–356 (2007)

    CAS  Google Scholar 

  15. Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144, 2377–2406 (1998)

    Article  CAS  Google Scholar 

  16. Färber, G. et al. Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on an X-ray analysis of 12,13-diepi-F430 pentamethyl ester and on NMR spectroscopy. Helv. Chim. Acta 74, 697–716 (1991)

    Article  Google Scholar 

  17. Livingston, D. A. et al. Factor-F430 from methanogenic bacteria—structure of the protein-free factor. Helv. Chim. Acta 67, 334–351 (1984)

    Article  CAS  Google Scholar 

  18. Pfaltz, A. et al. Factor F430 from methanogenic bacteria: structure of the porphinoid ligand system. Helv. Chim. Acta 65, 828–865 (1982)

    Article  CAS  Google Scholar 

  19. Rospert, S., Boecher, R., Albracht, S. P. J. & Thauer, R. K. Methyl-coenzyme M reductase preparations with high specific activity from hydrogen-preincubated cells of Methanobacterium thermoautotrophicum . FEBS Lett. 291, 371–375 (1991)

    Article  CAS  Google Scholar 

  20. Thauer, R. K. & Shima, S. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci. 1125, 158–170 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Nauhaus, K., Treude, T., Boetius, A. & Krueger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98–106 (2005)

    Article  CAS  Google Scholar 

  24. Chistoserdova, L., Vorholt, J. A. & Lidstrom, M. E. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6, 208 (2005)

    Article  Google Scholar 

  25. Mayr, S. et al. Structure of an F430 variant from Archaea associated with anaerobic oxidation of methane. J. Am. Chem. Soc. 130, 10758–10767 (2008)

    Article  CAS  Google Scholar 

  26. Duan, Z. H. & Mao, S. D. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim. Cosmochim. Acta 70, 3369–3386 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Buckel, W. & Golding, B. T. Radical enzymes in anaerobes. Annu. Rev. Microbiol. 60, 27–49 (2006)

    Article  CAS  Google Scholar 

  28. Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008)

    Article  CAS  Google Scholar 

  29. Arndtsen, B. A., Bergman, R. G., Mobley, T. A. & Peterson, T. H. Selective intermolecular carbon-hydrogen bond activation by synthetic metal-complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)

    Article  CAS  Google Scholar 

  30. Mahlert, F., Grabarse, W., Kahnt, J., Thauer, R. K. & Duin, E. C. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. J. Biol. Inorg. Chem. 7, 101–112 (2002)

    Article  CAS  Google Scholar 

  31. Goubeaud, M., Schreiner, G. & Thauer, R. K. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(i) oxidation state by titanium(iii) citrate. Eur. J. Biochem. 243, 110–114 (1997)

    Article  CAS  Google Scholar 

  32. Bonacker, L. G., Baudner, S., Moerschel, E., Boecher, R. & Thauer, R. K. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum . Eur. J. Biochem. 217, 587–595 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swiss National Science Foundation (S.S. and B.J.; grant 200020-119752) and the Max Planck Society and the Fonds der Chemischen Industrie (M.G., R.B. and R.K.T.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

B.J., R.K.T. and S.S. conceived and planned the experiments. S.S. carried out the synthesis of substrates, the NMR measurements and data analysis. M.G. and R.B. purified the enzyme, and S.S., M.G. and R.B. carried out the assays for the reverse reaction. B.J., R.K.T. and S.S. wrote the manuscript. All authors discussed and edited the manuscript.

Corresponding author

Correspondence to Bernhard Jaun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 with legends, Supplementary Tables 1-3, Supplementary Notes, a Supplementary Discussion and References. (PDF 926 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, S., Goenrich, M., Boecher, R. et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608 (2010). https://doi.org/10.1038/nature09015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09015

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing