Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization

Journal name:
Nature
Volume:
465,
Pages:
346–349
Date published:
DOI:
doi:10.1038/nature09074
Received
Accepted

Commensal bacteria are known to inhibit pathogen colonization; however, complex host–microbe and microbe–microbe interactions have made it difficult to gain a detailed understanding of the mechanisms involved in the inhibition of colonization1. Here we show that the serine protease Esp2, 3 secreted by a subset of Staphylococcus epidermidis, a commensal bacterium, inhibits biofilm formation and nasal colonization by Staphylococcus aureus, a human pathogen4. Epidemiological studies have demonstrated that the presence of Esp-secreting S. epidermidis in the nasal cavities of human volunteers correlates with the absence of S. aureus. Purified Esp inhibits biofilm formation and destroys pre-existing S. aureus biofilms. Furthermore, Esp enhances the susceptibility of S. aureus in biofilms to immune system components. In vivo studies have shown that Esp-secreting S. epidermidis eliminates S. aureus nasal colonization. These findings indicate that Esp hinders S. aureus colonization in vivo through a novel mechanism of bacterial interference, which could lead to the development of novel therapeutics to prevent S. aureus colonization and infection.

At a glance

Figures

  1. Inhibition of S. aureus biofilm formation and destruction of S. aureus biofilms by S. epidermidis.
    Figure 1: Inhibition of S. aureus biofilm formation and destruction of S. aureus biofilms by S. epidermidis.

    a, b, The inhibitory effect of S. epidermidis culture supernatants (a) or cells (b) on S. aureus biofilm formation. c, The destructive effect of S. epidermidis culture supernatants on S. aureus biofilms. After these treatments by S. epidermidis culture supernatants or cells on S. aureus, the amount of S. aureus biofilms was measured. Filled bars, effect of inhibitory S. epidermidis (JK16 strain); open bars, effect of non-inhibitory S. epidermidis (JK11 strain). Bars show the mean value of the experiments (n = 3). Error bars show standard deviation (s.d.).

  2. Isolation and characterization of the serine protease Esp, the factor responsible for the biofilm-destruction activity, secreted by inhibitory S. epidermidis.
    Figure 2: Isolation and characterization of the serine protease Esp, the factor responsible for the biofilm-destruction activity, secreted by inhibitory S. epidermidis.

    a, Growth curve (open circles) of inhibitory S. epidermidis (JK16 strain) and the biofilm-destruction activity (closed circles) of the culture supernatants of the same strain. The activity of the supernatants at 8h is shown as 100%. b, A protein having the biofilm-destruction activity was purified from the culture media of inhibitory S. epidermidis (arrow). M, molecular mass markers. c, Effects of the culture supernatants of inhibitory S. epidermidis (JK16, wild-type strain), an isogenic esp-deficient strain and a complemented strain on S. aureus biofilms. d, The biofilm-destruction activity of purified Esp was blocked by APMSF. (+) or (-) indicate the presence or absence of Esp and APMSF. e, Esp inhibited S. aureus biofilm formation in a dose-dependent manner. f, Esp destroyed S. aureus biofilms in a time-dependent manner. The biofilms were incubated in the presence (closed circles) or absence (open circles) of Esp for the indicated times. g–l, Microscopic observation of S. aureus biofilms incubated for 6h in the presence (j–l) or absence (gi) of Esp. Gram staining (g and j) and scanning electron micrographs (h, i, k, and l) of the biofilms with scale bars (10μm in g, h, j, and k, and 1μm in i and l). The arrows in j indicate the intercellular matrix. m, Esp enhanced the susceptibility of S. aureus in biofilms to hBD2. Viability of S. aureus cells in biofilms, which was incubated in the presence (+ or triangles) or absence (-) of Esp (1μM) and hBD2 (1, 5 and 10μM, from left to right in each triangle) for 6h. The cell viability without Esp and hBD2 was set as 100%. Plots and columns show mean and s.d. (n = 3). Statistical significance is indicated as *P<0.05 and **P<0.01.

  3. Elimination effect of inhibitory S. epidermidis cells on S. aureus nasal colonization.
    Figure 3: Elimination effect of inhibitory S. epidermidis cells on S. aureus nasal colonization.

    a, Representative culture images of samples from test persons after administration of inhibitory S. epidermidis (JK16, wild-type strain). The nasal swabs from the volunteers were cultured on mannitol salt agar with egg yolk. b, The bacterial counts of S. aureus from the nasal swabs after the administration of S. epidermidis cells. JK16 strain (closed circles; n = 7) or an isogenic esp-deficient strain (open circles; n = 6) were placed into the nasal cavities of the volunteers. Plots show mean and s.d. Statistical significance is indicated at *P<0.05. NS, not significant; DL, detection limit. c, Carrier rate of S. aureus after the administration of S. epidermidis wild type cells (closed circles; n = 7) and esp-deficient cells (open circles; n = 6). Statistical significance according to Kaplan–Meier method and log-rank test is at *P<0.05.

References

  1. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751762 (2005)
  2. Moon, J. L., Banbula, A., Oleksy, A., Mayo, J. A. & Travis, J. Isolation and characterization of a highly specific serine endopeptidase from an oral strain of Staphylococcus epidermidis . Biol. Chem. 382, 10951099 (2001)
  3. Dubin, G. et al. Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis . Biol. Chem. 382, 15751582 (2001)
  4. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520532 (1998)
  5. Klein, E., Smith, D. L. & Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg. Infect. Dis. 13, 18401846 (2007)
  6. Srinivasan, A., Dick, J. D. & Perl, T. M. Vancomycin resistance in staphylococci. Clin. Microbiol. Rev. 15, 430438 (2002)
  7. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505520 (1997)
  8. Peacock, S. J., de Silva, I. & Lowy, F. D. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 9, 605610 (2001)
  9. Graham, P. L., Lin, S. X. & Larson, E. L. A U.S. population-based survey of Staphylococcus aureus colonization. Ann. Intern. Med. 144, 318325 (2006)
  10. Kuehnert, M. J. et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J. Infect. Dis. 193, 172179 (2006)
  11. Shopsin, B. et al. Prevalence of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in the community. J. Infect. Dis. 182, 359362 (2000)
  12. Perl, T. M. et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N. Engl. J. Med. 346, 18711877 (2002)
  13. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 344, 1116 (2001)
  14. Lehrer, R. I. Primate defensins. Nature Rev. Microbiol. 2, 727738 (2004)
  15. Otto, M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22, 16031608 (2001)
  16. Mackowiak, P. A. The normal microbial flora. N. Engl. J. Med. 307, 8393 (1982)
  17. Brook, I. Bacterial interference. Crit. Rev. Microbiol. 25, 155172 (1999)
  18. Falagas, M. E., Rafailidis, P. I. & Makris, G. C. Bacterial interference for the prevention and treatment of infections. Int. J. Antimicrob. Agents 31, 518522 (2008)
  19. Uehara, Y. et al. H2O2 produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin. Infect. Dis. 32, 14081413 (2001)
  20. Speck, W. T., Driscoll, J. M., Polin, R. A. & Rosenkranz, H. S. Effect of bacterial flora on staphylococcal colonisation of the newborn. J. Clin. Pathol. 31, 153155 (1978)
  21. Poutrel, B. & Lerondelle, C. Protective effect in the lactating bovine mammary gland induced by coagulase-negative staphylococci against experimental Staphylococcus aureus infections. Ann. Rech. Vet. 11, 327332 (1980)
  22. Lina, G. et al. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl. Environ. Microbiol. 69, 1823 (2003)
  23. Peacock, S. J. et al. Determinants of acquisition and carriage of Staphylococcus aureus in infancy. J. Clin. Microbiol. 41, 57185725 (2003)
  24. Nicoll, T. R. & Jensen, M. M. Preliminary studies on bacterial interference of staphylococcosis of chickens. Avian Dis. 31, 140144 (1987)
  25. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 13551359 (2006)
  26. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804810 (2007)
  27. Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 29272932 (2007)
  28. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881884 (2001)
  29. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 16351638 (2005)
  30. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732737 (2006)
  31. Carroll, K. C., Leonard, R. B., Newcomb-Gayman, P. L. & Hillyard, D. R. Rapid detection of the staphylococcal mecA gene from BACTEC blood culture bottles by the polymerase chain reaction. Am. J. Clin. Pathol. 106, 600605 (1996)
  32. Iwase, T., Seki, K., Shinji, H., Mizunoe, Y. & Masuda, S. Development of a real-time PCR assay for the detection and identification of Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri . J. Med. Microbiol. 56, 13461349 (2007)
  33. Iwase, T. et al. Rapid identification and specific quantification of Staphylococcus epidermidis by 5′ nuclease real-time polymerase chain reaction with a minor groove binder probe. Diagn. Microbiol. Infect. Dis. 60, 217219 (2008)
  34. Hiramatsu, K. et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 16701673 (1997)
  35. Ohara-Nemoto, Y. et al. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis . Microb. Pathog. 33, 3341 (2002)
  36. Cui, L., Lian, J. Q., Neoh, H. M., Reyes, E. & Hiramatsu, K. DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus . Antimicrob. Agents Chemother. 49, 34043413 (2005)
  37. Bae, T. & Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 5863 (2006)
  38. Augustin, J. & Gotz, F. Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol. Lett. 66, 203207 (1990)
  39. Hanaki, H. et al. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J. Antimicrob. Chemother. 42, 199209 (1998)
  40. Neoh, H. M. et al. Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob. Agents Chemother. 52, 4553 (2008)
  41. Shinji, H. et al. Lipopolysaccharide-induced biphasic inositol 1,4,5-trisphosphate response and tyrosine phosphorylation of 140-kilodalton protein in mouse peritoneal macrophages. J. Immunol. 158, 13701376 (1997)
  42. Vuong, C. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269275 (2004)
  43. Midorikawa, K. et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect. Immun. 71, 37303739 (2003)
  44. Machin, D. C. M., Fayers, P. & Pinol, A. In Sample Size Tables for Clinical Studies 2nd edn, chap. 3 (Blackwell Science, 1997)
  45. Machin, D. C. M., Fayers, P. & Pinol, A. In Sample Size Tables for Clinical Studies 2nd edn, chap. 9 (Blackwell Science, 1997)
  46. Uehara, Y. et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J. Hosp. Infect. 44, 127133 (2000)
  47. Paule, S. M., Pasquariello, A. C., Thomson, R. B., Kaul, K. L. & Peterson, L. R. Real-time PCR can rapidly detect methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. Am. J. Clin. Pathol. 124, 404407 (2005)
  48. Ikeda, Y., Ohara-Nemoto, Y., Kimura, S., Ishibashi, K. & Kikuchi, K. PCR-based identification of Staphylococcus epidermidis targeting gseA encoding the glutamic-acid-specific protease. Can. J. Microbiol. 50, 493498 (2004)

Download references

Author information

Affiliations

  1. Department of Bacteriology, The Jikei University School of Medicine, Tokyo, 105-8461 Japan

    • Tadayuki Iwase,
    • Hitomi Shinji,
    • Akiko Tajima &
    • Yoshimitsu Mizunoe
  2. Department of General Medicine, Kochi Medical School, Nankoku, 783-8505 Japan

    • Yoshio Uehara &
    • Hiromi Seo
  3. Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461 Japan

    • Koji Takada
  4. Department of Environmental Health, The Jikei University School of Medicine, Tokyo, 105-8461 Japan

    • Toshihiko Agata

Contributions

T.I. and Y.M. designed the research and wrote the manuscript. All authors contributed the experiments; T.I., H.S., A.T., K.T. and Y.M. for in vitro study and epidemiological study, Y.U. and H.S. for in vivo study, T.A. for statistics. All authors discussed the results and commented on the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (976K)

    This file contains Supplementary Table 1 and Supplementary Figures 1- 6 with legends.

Additional data