Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule dynamics of gating in a neurotransmitter transporter homologue

Abstract

Neurotransmitter:Na+ symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na+ gradient. Drugs that interfere with this reuptake mechanism, such as cocaine and antidepressants, profoundly influence behaviour and mood. To probe the nature of the conformational changes that are associated with substrate binding and transport, we have developed a single-molecule fluorescence imaging assay and combined it with functional and computational studies of the prokaryotic NSS homologue LeuT. Here we show molecular details of the modulation of intracellular gating of LeuT by substrates and inhibitors, as well as by mutations that alter binding, transport or both. Our direct observations of single-molecule transitions, reflecting structural dynamics of the intracellular region of the transporter that might be masked by ensemble averaging or suppressed under crystallographic conditions, are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural landmarks and the disposition of the engineered Cys pairs in the crystal structure of LeuT.
Figure 2: Single-molecule imaging of LeuT.
Figure 3: The structural context of the observed dynamic changes.
Figure 4: Effects of mutation and CMI on FRET histograms of LeuT-H7C/R86C and LeuT-239C/480C.
Figure 5: Long single-molecule trajectories reveal FRET transitions.

Similar content being viewed by others

References

  1. Amara, S. G. & Sonders, M. S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998)

    Article  CAS  Google Scholar 

  2. Rudnick, G. Mechanisms of Biogenic Amine Neurotransmitter Transporters 2nd edn (Humana, Totowa, New Jersey, 2002)

    Book  Google Scholar 

  3. Sonders, M. S., Quick, M. & Javitch, J. A. How did the neurotransmitter cross the bilayer? A closer view. Curr. Opin. Neurobiol. 15, 296–304 (2005)

    Article  CAS  Google Scholar 

  4. Gu, H., Wall, S. C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994)

    CAS  Google Scholar 

  5. Torres, G. E., Gainetdinov, R. R. & Caron, M. G. Plasma membrane monoamine transporters: structure, regulation and function. Nature Rev. Neurosci. 4, 13–25 (2003)

    Article  CAS  Google Scholar 

  6. Krause, S. & Schwarz, W. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol. Pharmacol. 68, 1728–1735 (2005)

    CAS  Google Scholar 

  7. Iversen, L. Neurotransmitter transporters and their impact on the development of psychopharmacology. Br. J. Pharmacol. 147 (suppl. 1). S82–S88 (2006)

    Article  CAS  Google Scholar 

  8. Beuming, T., Shi, L., Javitch, J. A. & Weinstein, H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol. Pharmacol. 70, 1630–1642 (2006)

    Article  CAS  Google Scholar 

  9. Yamashita, A. et al. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Shi, L. et al. The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008)

    Article  CAS  Google Scholar 

  11. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317, 1390–1393 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nature Struct. Mol. Biol. 16, 652–657 (2009)

    Article  CAS  Google Scholar 

  14. Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl Acad. Sci. USA 106, 5563–5568 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Blanchard, S. C. Single-molecule observations of ribosome function. Curr. Opin. Struct. Biol. 19, 103–109 (2009)

    Article  CAS  Google Scholar 

  17. Kinosita, K. Jr, Yasuda, R. & Noji, H. F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 35, 3–18 (2000)

    Article  CAS  Google Scholar 

  18. Vale, R. D. Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol. 163, 445–450 (2003)

    Article  CAS  Google Scholar 

  19. Peterman, E. J., Sosa, H. & Moerner, W. E. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Ishii, Y., Nishiyama, M. & Yanagida, T. Mechano-chemical coupling of molecular motors revealed by single molecule measurements. Curr. Protein Pept. Sci. 5, 81–87 (2004)

    Article  CAS  Google Scholar 

  21. Zhuang, X. Single-molecule RNA science. Annu. Rev. Biophys. Biomol. Struct. 34, 399–414 (2005)

    Article  CAS  Google Scholar 

  22. Cornish, P. V. & Ha, T. A survey of single-molecule techniques in chemical biology. ACS Chem. Biol. 2, 53–61 (2007)

    Article  CAS  Google Scholar 

  23. Park, H., Toprak, E. & Selvin, P. R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007)

    Article  CAS  Google Scholar 

  24. Ha, T. Need for speed: mechanical regulation of a replicative helicase. Cell 129, 1249–1250 (2007)

    Article  CAS  Google Scholar 

  25. Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008)

    Article  CAS  Google Scholar 

  26. Herbert, K. M., Greenleaf, W. J. & Block, S. M. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem. 77, 149–176 (2008)

    Article  CAS  Google Scholar 

  27. Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Pyle, A. M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37, 317–336 (2008)

    Article  CAS  Google Scholar 

  29. Noskov, S. Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008)

    Article  CAS  Google Scholar 

  30. Celik, L., Schiott, B. & Tajkhorshid, E. Substrate binding and formation of an occluded state in the leucine transporter. Biophys. J. 94, 1600–1612 (2008)

    Article  CAS  Google Scholar 

  31. Jorgensen, A. M., Tagmose, L., Bogeso, K. P. & Peters, G. H. Molecular dynamics simulations of Na+/Cl--dependent neurotransmitter transporters in a membrane-aqueous system. ChemMedChem 2, 827–840 (2007)

    Article  Google Scholar 

  32. Kniazeff, J. et al. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem. 283, 17691–17701 (2008)

    Article  CAS  Google Scholar 

  33. Caplan, D. A., Subbotina, J. O. & Noskov, S. Y. Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT. Biophys. J. 95, 4613–4621 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Munro, J. B., Altman, R. B., O'Connor, N. & Blanchard, S. C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007)

    Article  CAS  Google Scholar 

  35. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)

    Article  CAS  Google Scholar 

  36. Dave, R., Terry, D. S., Munro, J. B. & Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Bennett, E. R., Su, H. & Kanner, B. I. Mutation of arginine 44 of GAT-1, a (Na+ + Cl-)-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275, 34106–34113 (2000)

    Article  CAS  Google Scholar 

  38. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009)

    Article  ADS  CAS  Google Scholar 

  39. Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)

    Article  CAS  Google Scholar 

  40. Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999)

    Article  CAS  Google Scholar 

  41. Majumdar, D. S. et al. Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc. Natl Acad. Sci. USA 104, 12640–12645 (2007)

    Article  ADS  CAS  Google Scholar 

  42. Nie, Y., Sabetfard, F. E. & Kaback, H. R. The Cys154→Gly mutation in LacY causes constitutive opening of the hydrophilic periplasmic pathway. J. Mol. Biol. 379, 695–703 (2008)

    Article  CAS  Google Scholar 

  43. Quick, M. & Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl Acad. Sci. USA 104, 3603–3608 (2007)

    Article  ADS  CAS  Google Scholar 

  44. Schaffner, W. & Weissmann, C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514 (1973)

    Article  CAS  Google Scholar 

  45. Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn (Springer, 2006)

    Book  Google Scholar 

  46. Mujumdar, R. B. et al. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105–111 (1993)

    Article  CAS  Google Scholar 

  47. Williams, A., Winfield, A. S. & Miller, N. J. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst (Lond.) 108, 1067–1071 (1983)

    Article  ADS  CAS  Google Scholar 

  48. Karstens, T. & Kobs, K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem. 84, 1871–1872 (1980)

    Article  CAS  Google Scholar 

  49. Blanchard, S. C. et al. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004)

    Article  ADS  CAS  Google Scholar 

  50. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004)

    Article  ADS  CAS  Google Scholar 

  51. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Altman for assistance with reagents for single-molecule experiments; F. Carvalho for the preparation of membranes; J. Munro for help measuring anisotropy; R. Dave for preliminary photobleaching optimization studies; and M. Quick for helpful discussion and comments on the manuscript. Molecular graphic figures and movies were prepared with PyMOL (DeLano Scientific; http://www.pymol.org). Computations were performed on Ranger at the Texas Advanced Computing Center (TG-MCB090022) and the David A. Cofrin computational infrastructure of the Institute for Computational Biomedicine at Weill Cornell Medical College. This work was supported in part by National Institutes of Health Grants DA17293 and DA022413 (J.A.J.), DA12408 (H.W.), and DA023694 (L.S.). D.S.T. is supported by the Tri-Institutional Training Program in Computational Biology and Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. expressed, purified, labelled and functionally characterized the LeuT mutants. Y.Z. and D.T. designed, carried out, and analysed the single-molecule experiments. L.S. and H.W. designed and analysed the computational studies, which were carried out by L.S., S.C.B. and J.A.J. helped to design the biochemical and single-molecule experiments and, with L.S. and H.W., helped to interpret the data. All the authors contributed to writing and editing the manuscript.

Corresponding authors

Correspondence to Scott C. Blanchard or Jonathan A. Javitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figures 1-8 with legends, Supplementary Tables 1-3, Notes for Supplementary Movies 1-2 and a Reference. (PDF 1324 kb)

Supplementary Movie 1

This flash movie shows a side view of conformational changes in the simulated transport mechanism from a ~180 ns molecular dynamics simulation that induces and equilibrates the inward-open structure (orange) starting from the LeuT crystal structure (gray). The conformational changes agree with and are reflected in the results from the smFRET measurements. (SWF 9327 kb)

Supplementary Movie 2

This flash movie shows an intracellular view of conformational changes in the simulated transport mechanism from a ~180 ns molecular dynamics simulation that induces and equilibrates the inward-open structure (orange) starting from the LeuT crystal structure (gray). The conformational changes agree with and are reflected in the results from the smFRET measurements. (SWF 9399 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Terry, D., Shi, L. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010). https://doi.org/10.1038/nature09057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing