Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

H2 emission arises outside photodissociation regions in ultraluminous infrared galaxies

Abstract

Ultraluminous infrared galaxies are among the most luminous objects in the local Universe and are thought to be powered by intense star formation1,2. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration3, but left unresolved was the source of excitation for this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultraluminous infrared galaxies and demonstrate that dust obscuration affects star formation indicators but not molecular hydrogen. I thereby establish that the emission of H2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is unexpected in light of the standard view that H2 emission is directly associated with star-formation activity3,4,5. I propose the alternative view that H2 emission in these objects traces shocks in the surrounding material that are excited by interactions with nearby galaxies. Large-scale shocks cooling by means of H2 emission may accordingly be more common than previously thought. In the early Universe, a boost in H2 emission by this process may have accelerated the cooling of matter as it collapsed to form the first stars and galaxies, and would make these first structures more readily observable6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wavelengths of emission features present in ULIRG spectra and representative opacity curves.
Figure 2: PAH features are affected by dust extinction.
Figure 3: H 2 emission in ULIRGs is not affected by extinction and shows excess over the H 2 /PAH ratio observed in normal galaxies.

Similar content being viewed by others

References

  1. Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Genzel, R. et al. What powers ultraluminous IRAS galaxies? Astrophys. J. 498, 579–605 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Higdon, S. J. U., Armus, L., Higdon, J. L., Soifer, B. T. & Spoon, H. W. W. A Spitzer Space Telescope Infrared Spectrograph survey of warm molecular hydrogen in ultraluminous infrared galaxies. Astrophys. J. 648, 323–339 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Roussel, H. et al. Warm molecular hydrogen in the Spitzer SINGS galaxy sample. Astrophys. J. 669, 959–981 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Hollenbach, D. J. & Tielens, A. G. G. M. Dense photodissociation regions (PDRs). Annu. Rev. Astron. Astrophys. 35, 179–215 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Appleton, P. N. et al. The Dark Side of Reionization: Probing Cooling in the Early Universe. Astro2010: The Astronomy and Astrophysics Decadal Survey, Cosmology and Fundamental Physics Panel, Science White Paper no. 2 (US National Academies of Science, 2009); preprint at http://arxiv.org/abs/0903.1839.

  7. Imanishi, M. et al. A Spitzer IRS low-resolution spectroscopic search for buried AGNs in nearby ultraluminous infrared galaxies: a constraint on geometry between energy sources and dust. Astrophys. J. Suppl. Ser. 171, 72–100 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Houck, J. R. et al. The infrared spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser 154, 18–24 (2004)

    Article  ADS  Google Scholar 

  9. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. Ser. 71, 733–775 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Hao, L. et al. The distribution of silicate strength of AGNs and ULIRGs. Astrophys. J. 655, L77–L80 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Spoon, H. W. W. et al. Mid-infrared galaxy classification based on silicate obscuration and PAH equivalent width. Astrophys. J. 654, L49–L52 (2007)

    Article  ADS  Google Scholar 

  12. Kennicutt, R. C. et al. SINGS: The SIRTF nearby galaxies survey. Publ. Astron. Soc. Pacific 115, 928–952 (2003)

    Article  ADS  Google Scholar 

  13. Shi, Y. et al. Aromatic features in AGNs: star-forming infrared luminosity function of AGN host galaxies. Astrophys. J. 669, 841–861 (2007)

    Article  ADS  CAS  Google Scholar 

  14. van der Werf, P. P. et al. Near-infrared line imaging of NGC 6240 – collision shock and nuclear starburst. Astrophys. J. 405, 522–537 (1993)

    Article  ADS  CAS  Google Scholar 

  15. van der Werf, P. P. in Galaxy Interactions at Low and High Redshift (eds Barnes, J. E. & Sanders, D. B.) 303–306 (International Astronomical Union, 1999)

    Book  Google Scholar 

  16. Kim, D.-C., Veilleux, S. & Sanders, D. B. Optical and near-infrared imaging of the IRAS 1 Jy sample of ultraluminous infrared galaxies. I. The atlas. Astrophys. J. Suppl. Ser. 143, 277–314 (2002)

    Article  ADS  Google Scholar 

  17. Rieke, G. H. et al. 1012L starbursts and shocked molecular hydrogen in the colliding galaxies Arp 220 ( = IC 4553) and NGC 6240. Astrophys. J. 290, 116–124 (1985)

    Article  ADS  CAS  Google Scholar 

  18. Appleton, P. N. et al. Powerful high-velocity dispersion molecular hydrogen associated with an intergalactic shock wave in Stephan’s Quintet. Astrophys. J. 639, L51–L54 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Egami, E., Rieke, G. H., Fadda, D. & Hines, D. C. A large mass of H2 in the brightest cluster galaxy in Zwicky 3146. Astrophys. J. 652, L21–L24 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Ogle, P. et al. Shocked molecular hydrogen in the 3C 326 radio galaxy system. Astrophys. J. 668, 699–707 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Guillard, P., Boulanger, F., Pineau des Forêts, G. & Appleton, P. N. H2 formation and excitation in the Stephan’s Quintet galaxy-wide collision. Astron. Astrophys. 502, 515–528 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Monreal-Ibero, A., Arribas, S. & Colina, L. LINER-like extended nebulae in ULIRGs: shocks generated by merger-induced flows. Astrophys. J. 637, 138–146 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Forbes, D. A. et al. High-resolution imaging of forbidden Fe II 1.64 microns, Brackett-gamma, and H2 1–0 S(1) emission in the starburst galaxy NGC 253. Astrophys. J. 406, L11–L14 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Greif, T. H., Johnson, J. L., Klessen, R. S. & Bromm, V. The first galaxies: assembly, cooling and the onset of turbulence. Mon. Not. R. Astron. Soc. 387, 1021–1036 (2008)

    Article  ADS  Google Scholar 

  25. Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001)

    Article  ADS  Google Scholar 

  26. Kemper, F., Vriend, W. J. & Tielens, A. G. G. M. The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Chiar, J. E. & Tielens, A. G. G. M. Pixie dust: the silicate features in the diffuse interstellar medium. Astrophys. J. 637, 774–785 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Zakamska, N. L., Gómez, L., Strauss, M. A. & Krolik, J. H. Mid-infrared spectra of optically-selected type 2 quasars. Astron. J. 136, 1607–1622 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Gerakines, P. A., Schutte, W. A., Greenberg, J. M. & van Dishoeck, E. F. The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. Astron. Astrophys. 296, 810–818 (1995)

    ADS  CAS  Google Scholar 

  30. Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spitzer Space Telescope Fellowship provided by NASA through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology, by the John N. Bahcall Fellowship at the Institute for Advanced Study and by the NSF grant AST-0807444. I would like to thank M. Imanishi for providing reduced, flux-calibrated ULIRG data in electronic form and for his permission to use these data for a study of H2 emission. I would like to thank P. Goldreich, J. Krolik and S. Davis for discussions, and H. Spoon and L. Hao for providing electronic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia L. Zakamska.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Readers are welcome to comment on the online version of this article at www.nature.com/nature.

Supplementary information

Supplementary information

This file contains Supplementary Information and Data, Supplementary Figures 1-3, Supplementary Tables 1-2 and References. (PDF 230 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakamska, N. H2 emission arises outside photodissociation regions in ultraluminous infrared galaxies. Nature 465, 60–63 (2010). https://doi.org/10.1038/nature09037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing