Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean

Abstract

Oxygen and silicon isotope compositions of cherts1,2,3 and studies of protein evolution4 have been interpreted to reflect ocean temperatures of 55–85 °C during the early Palaeoarchaean era (3.5 billion years ago). A recent study combining oxygen and hydrogen isotope compositions of cherts, however, makes a case for Archaean ocean temperatures being no greater than 40 °C (ref. 5). Ocean temperature can also be assessed using the oxygen isotope composition of phosphate. Recent studies show that 18O:16O ratios of dissolved inorganic phosphate (δ18OP) reflect ambient seawater temperature as well as biological processing that dominates marine phosphorus cycling at low temperature6,7. All forms of life require and concentrate phosphorus, and as a result of biological processing, modern marine phosphates have δ18OP values typically between 19–26‰ (VSMOW)7,8, highly evolved from presumed source values of 6–8‰ that are characteristic of apatite in igneous rocks9,10 and meteorites11. Here we report oxygen isotope compositions of phosphates in sediments from the 3.2–3.5-billion-year-old Barberton Greenstone Belt in South Africa. We find that δ18OP values range from 9.3‰ to 19.9‰ and include the highest values reported for Archaean rocks. The temperatures calculated from our highest δ18OP values and assuming equilibrium with sea water with δ18O = 0‰ (ref. 12) range from 26 °C to 35 °C. The higher δ18OP values are similar to those of modern marine phosphate and suggest a well-developed phosphorus cycle and evolved biologic activity on the Archaean Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of δ18OP values from Barberton sediments with modern marine phosphates and igneous phosphates.
Figure 2: Back-scattered electron images of phosphate phases in Barberton sediments.
Figure 3: Comparison of δ 18 O values of Barberton phosphates and cherts.
Figure 4: Sketch of possible phosphorus cycling and phosphate–iron oxide interactions in a thermally stratified Archaean ocean.

Similar content being viewed by others

References

  1. Knauth, L. P. & Lowe, D. R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Karhu, J. & Epstein, S. The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim. Cosmochim. Acta 50, 1745–1756 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Robert, F. & Chaussidon, M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Gaucher, E. A., Govindarajan, S. & Ganesh, O. K. Paleotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704–707 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Hren, M. T., Tice, M. M. & Chamberlain, C. P. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205–208 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Blake, R. E., O’Neil, J. R. & Surkov, A. V. Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. Am. J. Sci. 305, 596–620 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Colman, A. S., Blake, R. E., Karl, D. M., Fogel, M. L. & Turekian, K. K. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc. Natl Acad. Sci. USA 102, 13023–13028 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Shemesh, A., Kolodny, Y. & Luz, B. Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Planet. Sci. Lett. 64, 405–416 (1983)

    Article  ADS  CAS  Google Scholar 

  9. Taylor, H. P. & Epstein, S. Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part I. Principles and experimental results. Geol. Soc. Am. Bull. 73, 461–480 (1962)

    Article  ADS  CAS  Google Scholar 

  10. Markel, D., Kolodny, Y., Luz, B. & Nishri, A. Phosphorus cycling and phosphorus sources in Lake Kinneret: tracing by oxygen isotopes in phosphate. Isr. J. Earth Sci. 43, 165–178 (1994)

    CAS  Google Scholar 

  11. Greenwood, J. P., Blake, R. E. & Coath, C. D. Ion microprobe measurements of 18O/16O ratios of phosphate minerals in the Martian meteorites ALH84001 and Los Angeles. Geochim. Cosmochim. Acta 67, 2289–2298 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Muehlenbachs, K. & Clayton, R. N. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res. 81, 4365–4369 (1976)

    Article  ADS  CAS  Google Scholar 

  13. Walsh, M. M. & Lowe, D. R. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530–532 (1985)

    Article  ADS  Google Scholar 

  14. Byerly, G. R., Lowe, D. R. & Walsh, M. M. Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319, 489–491 (1986)

    Article  ADS  CAS  Google Scholar 

  15. Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H. & de Wit, M. Early life recorded in Archean pillow lavas. Science 304, 578–581 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Lowe, D. R. & Byerly, G. R. in Earth's Oldest Rocks (eds van Kranendonk, M. J., Smithies, R. H. & Bennet, V. C.) 481–526 (Elsevier, Developments in Precambrian Geology 15, 2007)

    Book  Google Scholar 

  17. Tice, M. M., Bostick, B. C. & Lowe, D. R. Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32, 37–40 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Lowe, D. R. in Geologic Evolution of the Barberton Greenstone Belt, South Africa (eds Lowe, D. R. & Byerly, G. R.) Geol. Soc. Am. Spec. Pap. 329, 83–114 (1999)

    Google Scholar 

  19. Hofmann, A. & Bolhar, R. Carbonaceous cherts in the Barberton Greenstone Belt and their significance for the study of early life in the Archean record. Astrobiology 7, 355–388 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Hofmann, A. & Harris, C. Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem. Geol. 257, 221–239 (2008)

    Article  ADS  Google Scholar 

  21. van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W. & Vroon, P. Z. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35, 939–942 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Vennemann, T. W., Fricke, H. C., Blake, R. E., O’Neil, J. R. & Colman, A. Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4 . Chem. Geol. 185, 321–336 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Berner, R. A. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77–86 (1973)

    Article  ADS  CAS  Google Scholar 

  24. Smith, H. S., O'Neil, J. R. & Erlank, A. J. in Archean Geochemistry (eds Kroner, A., Hanson, G. N. & Goodwin, A. M.) 115–137 (Springer, 1984)

    Book  Google Scholar 

  25. Jaffrés, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007)

    Article  ADS  Google Scholar 

  26. Longinelli, A. & Nuti, S. Revised phosphate-water isotopic temperature scale. Earth Planet. Sci. Lett. 19, 373–376 (1973)

    Article  ADS  CAS  Google Scholar 

  27. Kolodny, Y., Luz, B. & Navon, O. Oxygen isotope variations in phosphate of biogenic apatites. I. Fish bone apatite—rechecking the rules of the game. Earth Planet. Sci. Lett. 64, 398–404 (1983)

    Article  ADS  CAS  Google Scholar 

  28. Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992)

    Article  ADS  CAS  Google Scholar 

  32. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962)

    Article  CAS  Google Scholar 

  34. Karl, D. M. & Tien, G. MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol. Oceanogr. 37, 105–116 (1992)

    Article  ADS  CAS  Google Scholar 

  35. Tudge, A. P. A method of analysis of oxygen isotopes in orthophosphate—its use in the measurement of paleotemperatures. Geochim. Cosmochim. Acta 18, 81–93 (1960)

    Article  ADS  CAS  Google Scholar 

  36. Liang, Y. Oxygen Isotope Studies of Biogeochemical Cycling of Phosphorus PhD thesis, Yale Univ. (2005)

    Google Scholar 

  37. Colman, S. A. The Oxygen Isotope Composition of Dissolved Inorganic Phosphate and the Marine Phosphorus Cycle PhD thesis, Yale Univ. (2002)

    Google Scholar 

Download references

Acknowledgements

We thank M. Kastner and J. R. O’Neil for editorial suggestions and G. Olack and K. Fornash for technical assistance with isotopic analyses.

Author Contributions R.B. and A.L. conceived the study; A.L. performed field work, sample collection, petrographic and chemical analyses; S.J.C. and R.B. developed methods of sequential PO4 extraction, purification, micro-precipitation and PO4 oxygen isotope analysis. All authors contributed to the interpretation of results and the writing and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth E. Blake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S3, Supplementary Sample Descriptions 2.1-2.3, Supplementary Figures S1-S2, a Supplementary Discussion about the oxygen isotopic composition of seawater and Supplementary References. (PDF 1305 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, R., Chang, S. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1032 (2010). https://doi.org/10.1038/nature08952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08952

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology