Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retroviral intasome assembly and inhibition of DNA strand transfer

Abstract

Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein–DNA and protein–protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the PFV intasome.
Figure 2: Sequence-specific protein–DNA interactions.
Figure 3: PFV IN active site in committed and drug-bound states.
Figure 4: Predicted target DNA binding orientation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors have been deposited with the Protein Data Bank under accession codes 3L2Q (Apo), 3L2R (Mg), 3L2S (Mn), 3L2T (Mg/MK0518), 3L2U (Mg/GS9137), 3L2V (Mn/MK0518) and 3L2W (Mn/GS9137) structures. Raw diffraction images are available on request.

References

  1. Craigie, R. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 613–630 (ASM Press, 2002)

    Book  Google Scholar 

  2. Lewinski, M. K. & Bushman, F. D. Retroviral DNA integration - mechanism and consequences. Adv. Genet. 55, 147–181 (2005)

    Article  CAS  Google Scholar 

  3. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005)

    Article  CAS  Google Scholar 

  5. Davies, D. R., Goryshin, I. Y., Reznikoff, W. S. & Rayment, I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77–85 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Richardson, J. M., Colloms, S. D., Finnegan, D. J. & Walkinshaw, M. D. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138, 1096–1108 (2009)

    Article  CAS  Google Scholar 

  7. Jaskolski, M., Alexandratos, J. N., Bujacz, G. & Wlodawer, A. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J. 276, 2926–2946 (2009)

    Article  CAS  Google Scholar 

  8. Nowotny, M. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10, 144–151 (2009)

    Article  CAS  Google Scholar 

  9. Engelman, A., Mizuuchi, K. & Craigie, R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211–1221 (1991)

    Article  CAS  Google Scholar 

  10. Cai, M. et al. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nature Struct. Biol. 4, 567–577 (1997)

    Article  CAS  Google Scholar 

  11. Eijkelenboom, A. P. et al. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nature Struct. Biol. 2, 807–810 (1995)

    Article  CAS  Google Scholar 

  12. Li, M., Mizuuchi, M., Burke, T. R. & Craigie, R. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J. 25, 1295–1304 (2006)

    Article  CAS  Google Scholar 

  13. Marchand, C., Maddali, K., Métifiot, M. & Pommier, Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr. Top. Med. Chem. 9, 1016–1037 (2009)

    Article  CAS  Google Scholar 

  14. Summa, V. et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 51, 5843–5855 (2008)

    Article  CAS  Google Scholar 

  15. Sato, M. et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem. 49, 1506–1508 (2006)

    Article  CAS  Google Scholar 

  16. Espeseth, A. S. et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl Acad. Sci. USA 97, 11244–11249 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Valkov, E. et al. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 37, 243–255 (2009)

    Article  CAS  Google Scholar 

  18. Hare, S. et al. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog. 5, e1000515 (2009)

    Article  Google Scholar 

  19. Wang, J. Y., Ling, H., Yang, W. & Craigie, R. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J. 20, 7333–7343 (2001)

    Article  CAS  Google Scholar 

  20. Michel, F. et al. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J. 28, 980–991 (2009)

    Article  CAS  Google Scholar 

  21. Chen, J. C. et al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl Acad. Sci. USA 97, 8233–8238 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Chen, Z. et al. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50–293)—an initial glance of the viral DNA binding platform. J. Mol. Biol. 296, 521–533 (2000)

    Article  CAS  Google Scholar 

  23. Yang, Z. N., Mueser, T. C., Bushman, F. D. & Hyde, C. C. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. J. Mol. Biol. 296, 535–548 (2000)

    Article  CAS  Google Scholar 

  24. Alian, A. et al. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs. Proc. Natl Acad. Sci. USA 106, 8192–8197 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Esposito, D. & Craigie, R. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J. 17, 5832–5843 (1998)

    Article  CAS  Google Scholar 

  26. Jenkins, T. M., Esposito, D., Engelman, A. & Craigie, R. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. 16, 6849–6859 (1997)

    Article  CAS  Google Scholar 

  27. Steiniger-White, M., Rayment, I. & Reznikoff, W. S. Structure/function insights into Tn5 transposition. Curr. Opin. Struct. Biol. 14, 50–57 (2004)

    Article  CAS  Google Scholar 

  28. Bujacz, G. et al. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J. Biol. Chem. 272, 18161–18168 (1997)

    Article  CAS  Google Scholar 

  29. Nowak, M. G., Sudol, M., Lee, N. E., Konsavage, W. M. & Katzman, M. Identifying amino acid residues that contribute to the cellular-DNA binding site on retroviral integrase. Virology 389, 141–148 (2009)

    Article  CAS  Google Scholar 

  30. Miller, M. D., Bor, Y. C. & Bushman, F. Target DNA capture by HIV-1 integration complexes. Curr. Biol. 5, 1047–1056 (1995)

    Article  CAS  Google Scholar 

  31. Grobler, J. A. et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl Acad. Sci. USA 99, 6661–6666 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Langley, D. R. et al. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry 47, 13481–13488 (2008)

    Article  CAS  Google Scholar 

  33. Buzón, M. J. et al. The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates. AIDS 24, 17–25 (2010)

    Article  Google Scholar 

  34. Grobler, J. A., Stillmock, K., Miller, M. D. & Hazuda, D. J. Mechanism by which the HIV integrase active-site mutation N155H confers resistance to raltegravir. Antivir. Ther. 13 (suppl. 3). A41 (2008)

    Google Scholar 

  35. Engelman, A., Hickman, A. B. & Craigie, R. The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol. 68, 5911–5917 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cherepanov, P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro . Nucleic Acids Res. 35, 113–124 (2007)

    Article  CAS  Google Scholar 

  37. Leslie, A. G. W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallography no. 26, (1992)

    Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  39. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  40. Terwilliger, T. C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003)

    Article  CAS  Google Scholar 

  41. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006)

    Article  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  43. Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008)

    Article  CAS  Google Scholar 

  44. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  45. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

  46. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

  47. Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  Google Scholar 

  48. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003)

    Article  CAS  Google Scholar 

  49. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)

    Article  CAS  Google Scholar 

  50. Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res. 25, 4940–4945 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Dyda for critical reading of the manuscript, R. Clayton and M. Cummings for the generous gift of InSTIs and helpful discussions, T. Sorensen and the staff of the I02 and I04 beamlines of the Diamond Light Source for assistance with X-ray data collection. P.C. and co-workers are funded by the UK Medical Research Council, and A.E. by the US National Institutes of Health.

Author Contributions E.V. and P.C. carried out initial trials with truncated PFV IN constructs; S.S.G. and P.C. obtained full-length PFV IN–DNA complexes, carried out crystallization screening and optimization; S.H. soaked and prepared crystals for data collection; S.H. and P.C. collected diffraction data and solved the structures; S.H. refined the final models; S.H. and S.S.G. carried out gel-filtration and activity assays; P.C., S.H. and A.E. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cherepanov.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-7 with Legends. (PDF 5518 kb)

Supplementary Movie 1

This movie file shows the overall architecture of the PFV intasome. (MOV 10871 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, S., Gupta, S., Valkov, E. et al. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464, 232–236 (2010). https://doi.org/10.1038/nature08784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08784

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing