Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electron liquids and solids in one dimension

Abstract

Even though bulk metallic systems contain a very large number of strongly interacting electrons, their properties are well described within Landau's Fermi liquid theory of non-interacting quasiparticles. Although many higher-dimensional systems can be successfully understood on the basis of such non-interacting theories, this is not possible for one-dimensional systems. When confined to narrow channels, electron interaction gives rise to such exotic phenomena as spin–charge separation and the emergence of correlated-electron insulators. Such strongly correlated electronic behaviour has recently been seen in experiments on one-dimensional carbon nanotubes and nanowires, and this behaviour challenges the theoretical description of such systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power-law behaviour of electron tunnelling with energy for molybdenum selenide wires of various diameters.
Figure 2: Momentum-resolved tunnelling spectroscopy using two parallel wires.
Figure 3: Probing spin–charge separation and charge fractionalization in interacting 1D wires using momentum-resolved tunnelling spectroscopy.
Figure 4: Spreading of charge on tunnelling into an interacting wire.
Figure 5: Effects of the finite mass of particles forming the nonlinear Luttinger liquid.
Figure 6: Charges at low densities in a carbon nanotube form a 1D Wigner crystal.
Figure 7: Electron correlations in 1D carbon nanotubes give rise to insulating gaps.

Similar content being viewed by others

References

  1. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 9, 1–27 (Pergamon, 1980).

    Book  Google Scholar 

  2. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  CAS  Google Scholar 

  3. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Article  ADS  CAS  Google Scholar 

  4. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton's cradle. Nature 440, 900–903 (2006).

    Article  ADS  CAS  Google Scholar 

  5. Clément, D., Fabbri, N., Fallani, L., Fort, C. & Inguscio, M. Exploring correlated 1D Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).

    Article  ADS  Google Scholar 

  6. Auslaender, O. M. et al. Spin–charge separation and localization in one dimension. Science 308, 88–92 (2005). This paper reports the observation of the spin-charge separation using momentum-resolved electron tunnelling.

    Article  ADS  CAS  Google Scholar 

  7. Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  CAS  Google Scholar 

  8. Steinberg, H. et al. Charge fractionalization in quantum wires. Nature Phys. 4, 116–119 (2008).

    Article  ADS  CAS  Google Scholar 

  9. Imambekov, A. & Glazman, L. I. Universal theory of nonlinear Luttinger liquids. Science 323, 228–231 (2009). This paper describes the theory of momentum-resolved electron tunnelling into a liquid of particles with a generic (nonlinear) dispersion relationship.

    Article  MathSciNet  CAS  Google Scholar 

  10. Khodas, M., Pustilnik, M., Kamenev, A. & Glazman, L. I. Fermi–Luttinger liquid: spectral function of interacting one-dimensional fermions. Phys. Rev. B 76, 155402 (2007).

    Article  ADS  Google Scholar 

  11. Pereira, R. G., White, S. R. & Affleck, I. Spectral function of spinless fermions on a one-dimensional lattice. Phys. Rev. B 79, 165113 (2009).

    Article  ADS  Google Scholar 

  12. Pereira, R. G. & Sela, E. Coulomb drag from spin–charge coupling at zero magnetic field. Preprint at <http://arxiv.org/abs/0911.1391> (2009).

    Google Scholar 

  13. Schmidt, T. L., Imambekov, A. & Glazman, L. I. The fate of 1D spin–charge separation away from Fermi points. Preprint at <http://arxiv.org/abs/0912.0326> (2009).

    Google Scholar 

  14. Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys. 4, 314–318 (2008).

    Article  CAS  Google Scholar 

  15. Deshpande, V. V. et al. Mott insulating state in ultraclean carbon nanotubes. Science 323, 106–110 (2009). This paper reports the observation of energy gaps in nominally metallic carbon nanotubes, as well as the presence of low-energy neutral excitations within the gap that are interpreted using the theory of 1D Mott insulators.

    Article  ADS  CAS  Google Scholar 

  16. Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992). This paper predicted the zero-bias anomalies in tunnelling into a Luttinger liquid.

    Article  CAS  Google Scholar 

  17. Egger, R. & Gogolin, A. O. Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79, 5082–5085 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Kane, C., Balents, L. & Fisher, M. P. A. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Matveev, K. A. & Glazman, L. I. Coulomb blockade of tunnelling into a quasi-one-dimensional wire. Phys. Rev. Lett. 70, 990–993 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Yao, Z., Postma, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999). This paper reports the power-law behaviour of the end-to-end tunnelling conductance between carbon nanotubes, consistent with Luttinger liquid theory.

    Article  ADS  CAS  Google Scholar 

  21. Postma, H. W. C., Jonge, M., Yao, Z. & Dekker, C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys. Rev. B 62, R10653−R10656 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999). This paper studies two geometries for electron tunnelling into carbon nanotubes and shows that the energy dependence of the tunnelling rate is consistent with the theoretical predictions.

    Article  ADS  CAS  Google Scholar 

  23. Nazarov, Y. V. Coulomb blockade of tunneling in isolated junctions. JETP Lett. 49, 126–128 (1989).

    ADS  Google Scholar 

  24. Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel-junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Girvin, S. M., Glazman, L. I., Jonson, M., Penn, D. R. & Stiles, M. D. Quantum fluctuations and the single-junction Coulomb blockade. Phys. Rev. Lett. 64, 3183–3186 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Auslaender, O. M. et al. Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 84, 1764–1767 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M. & Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001).

    Article  ADS  CAS  Google Scholar 

  28. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    Article  ADS  CAS  Google Scholar 

  29. Venkataraman, L., Hong, Y. S. & Kim, P. Electron transport in a multichannel one-dimensional conductor: molybdenum selenide nanowires. Phys. Rev. Lett. 96, 076601 (2006).

    Article  ADS  Google Scholar 

  30. Bachtold, A. et al. Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett. 87, 166801 (2001).

    Article  ADS  CAS  Google Scholar 

  31. Balents, L. & Fisher, M. P. A. Correlation effects in carbon nanotubes. Phys. Rev. B 55, R11973−R11976 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Krotov, Y. A., Lee, D. H. & Louie, S. G. Low energy properties of (n, n) carbon nanotubes. Phys. Rev. Lett. 78, 4245–4248 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Odintsov, A. A. & Yoshioka, H. Universality of electron correlations in conducting carbon nanotubes. Phys. Rev. B 59, R10457−R10460 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Nersesyan, A. A. & Tsvelik, A. M. Coulomb blockade regime of a single-wall carbon nanotube. Phys. Rev. B 68, 235419 (2003).

    Article  ADS  Google Scholar 

  35. Steinberg, H. et al. Localization transition in a ballistic quantum wire. Phys. Rev. B 73, 113307 (2006).

    Article  ADS  Google Scholar 

  36. Kim, B. J. et al. Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2 . Nature Phys. 2, 397–401 (2006).

    Article  ADS  CAS  Google Scholar 

  37. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  CAS  Google Scholar 

  38. Giamarchi, T. Quantum Physics in One Dimension 81–86 (Oxford Univ. Press, 2004).

    MATH  Google Scholar 

  39. Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    Article  ADS  CAS  Google Scholar 

  40. Carpentier, D., Peça, C. & Balents, L. Momentum-resolved tunneling between Luttinger liquids. Phys. Rev. B 66, 153304 (2002).

    Article  ADS  Google Scholar 

  41. Jompol, Y. et al. Probing spin–charge separation in a Tomonaga–Luttinger liquid. Science 325, 597–601 (2009).

    Article  ADS  CAS  Google Scholar 

  42. Pustilnik, M., Khodas, M., Kamenev, A. & Glazman, L. I. Dynamic response of one-dimensional interacting fermions. Phys. Rev. Lett. 96, 196405 (2006).

    Article  ADS  CAS  Google Scholar 

  43. Imambekov, A. & Glazman, L. I. Phenomenology of one-dimensional quantum liquids beyond the low-energy limit. Phys. Rev. Lett. 102, 126405 (2009).

    Article  ADS  Google Scholar 

  44. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  45. Berg, E., Oreg, Y., Kim, E. A. & von Oppen, F. Fractional charges on an integer quantum Hall edge. Phys. Rev. Lett. 102, 236402 (2009).

    Article  ADS  CAS  Google Scholar 

  46. Pustilnik, M. Dynamic structure factor of the Calogero–Sutherland model. Phys. Rev. Lett. 97, 036404 (2006).

    Article  ADS  Google Scholar 

  47. Anderson, P. W. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967).

    Article  ADS  CAS  Google Scholar 

  48. Meyer, J. S. & Matveev, K. A. Wigner crystal physics in quantum wires. J. Phys. Condens. Matter 21, 023203 (2009).

    Article  ADS  Google Scholar 

  49. Matveev, K. A. Conductance of a quantum wire in the Wigner-crystal regime. Phys. Rev. Lett. 92, 106801 (2004).

    Article  ADS  CAS  Google Scholar 

  50. Schulz, H. J. Wigner crystal in one dimension. Phys. Rev. Lett. 71, 1864–1867 (1993).

    Article  ADS  CAS  Google Scholar 

  51. Averin, D. V. & Nazarov, Y. V. Tunneling to and from the one-dimensional Wigner lattice. Phys. Rev. B 47, 9944–9947 (1993).

    Article  ADS  CAS  Google Scholar 

  52. Glazman, L. I., Ruzin, I. M. & Shklovskii, B. I. Quantum transport and pinning of a one-dimensional Wigner crystal. Phys. Rev. B 45, 8454–8463 (1992).

    Article  CAS  Google Scholar 

  53. Fiete, G. A. The spin-incoherent Luttinger liquid. Rev. Mod. Phys. 79, 801–820 (2007).

    Article  ADS  Google Scholar 

  54. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  ADS  CAS  Google Scholar 

  55. Cobden, D. H., Bockrath, M., McEuen, P. L., Rinzler, A. G. & Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 (1998).

    Article  ADS  CAS  Google Scholar 

  57. Minot, E. D., Yaish, Y., Sazonova, V. & McEuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).

    Article  ADS  CAS  Google Scholar 

  58. Levitov, L. S. & Tsvelik, A. M. Narrow-gap Luttinger liquid in carbon nanotubes. Phys. Rev. Lett. 90, 016401 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Novikov, D. S. Electron properties of carbon nanotubes in a periodic potential. Phys. Rev. B 72, 235428 (2005).

    Article  ADS  Google Scholar 

  60. Mott, N. F. Metal-insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    Article  ADS  CAS  Google Scholar 

  61. Dagotto, E. & Rice, T. M. Surprises on the way from one- to two-dimensional quantum magnets: the ladder materials. Science 271, 618–623 (1996).

    Article  ADS  CAS  Google Scholar 

  62. Charlier, J., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  ADS  CAS  Google Scholar 

  63. Chen, W., Andreev, A. V., Tsvelik, A. M. & Dror, O. Twist instability in strongly correlated carbon nanotubes. Phys. Rev. Lett. 101, 246802 (2008).

    Article  ADS  Google Scholar 

  64. Yang, L., Anantram, M. P., Han, J. & Lu, J. P. Band-gap change of carbon nanotubes: effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874–13878 (1999).

    Article  ADS  CAS  Google Scholar 

  65. Garst, M., Novikov, D. S., Stern, A. & Glazman, L. I. Critical conductance of a one-dimensional doped Mott insulator. Phys. Rev. B 77, 035128 (2008).

    Article  ADS  Google Scholar 

  66. Hew, W. K. et al. Incipient formation of an electron lattice in a weakly confined quantum wire. Phys. Rev. Lett. 102, 056804 (2009).

    Article  ADS  CAS  Google Scholar 

  67. Zhong, Z., Gabor, N. M., Sharping, J. E., Gaeta, A. L. & McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nature Nanotechnol. 3, 201–205 (2008).

    Article  CAS  Google Scholar 

  68. Lefebvre, J. & Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 167406 (2007).

    Article  ADS  CAS  Google Scholar 

  69. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  ADS  CAS  Google Scholar 

  70. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    Article  ADS  Google Scholar 

  71. Balents, L. X-ray-edge singularities in nanotubes and quantum wires with multiple subbands. Phys. Rev. B 61, 4429–4432 (2000).

    Article  ADS  CAS  Google Scholar 

  72. Gutman, D. B., Gefen, Y. & Mirlin, A. D. Tunneling spectroscopy of Luttinger-liquid structures far from equilibrium. Phys. Rev. B 80, 045106 (2009).

    Article  ADS  Google Scholar 

  73. Chen, Y.-F., Dirks, T., Al-Zoubi, G., Birge, N. O. & Mason, N. Nonequilibrium tunneling spectroscopy in carbon nanotubes. Phys. Rev. Lett. 102, 036804 (2009).

    Article  ADS  Google Scholar 

  74. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Possible experimental manifestations of the many-body localization. Phys. Rev. B 76, 052203 (2007).

    Article  ADS  Google Scholar 

  75. Tomonaga, S. Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544–569 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  76. Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154–1162 (1963).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

A.Y. and L.I.G. acknowledge a discussion with B. I. Halperin of the difference between charge fractionalization and quantization. L.I.G. acknowledges support from the US National Science Foundation (NSF) Division of Materials Research (grant no. DMR-0906498) and the Nanosciences Foundation at Grenoble, France. M.B. acknowledges the US Office of Naval Research. A.Y. is supported by the NSF under contract DMR.0707484.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declares no competing financial interest

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to M.B. (marc.bockrath@ucr.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, V., Bockrath, M., Glazman, L. et al. Electron liquids and solids in one dimension. Nature 464, 209–216 (2010). https://doi.org/10.1038/nature08918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08918

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing