Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum computers

Abstract

Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dephasing and decoherence.
Figure 2: Photonic quantum computer.
Figure 3: Trapped atom qubits.
Figure 4: Quantum dot and solid-state dopant qubits.
Figure 5: Superconducting qubits.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    MATH  Google Scholar 

  2. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    ADS  CAS  PubMed  Google Scholar 

  3. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    MATH  Google Scholar 

  4. Mizel, A., Lidar, D. A. & Mitchell, M. Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)

    ADS  PubMed  Google Scholar 

  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    ADS  CAS  PubMed  Google Scholar 

  6. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR-spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gershenfeld, N. A. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275, 350–356 (1997)

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  8. Ryan, C. A., Moussa, O., Baugh, J. & Laflamme, R. Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100, 140501 (2008)

    ADS  CAS  PubMed  Google Scholar 

  9. Shor, P. W. & Jordan, S. P. Estimating Jones polynomials is a complete problem for one clean qubit. Quant. Inform. Comput. 8, 681–714 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)

    ADS  CAS  PubMed  Google Scholar 

  12. Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  PubMed  Google Scholar 

  13. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    ADS  CAS  PubMed  Google Scholar 

  14. Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  15. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007)

    ADS  PubMed  Google Scholar 

  16. Migdal, A. & Dowling, J. eds. Single-photon detectors, applications, and measurement. J. Mod. Opt. 51, (2004)

  17. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photon. 3, 696–705 (2009)

    ADS  CAS  Google Scholar 

  18. Grangier, P., Sanders, B. & Vuckovic, J. eds. Focus on single photons on demand. New J. Phys. 6, (2004)

  19. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007)

    ADS  CAS  Google Scholar 

  20. Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009)

    ADS  CAS  Google Scholar 

  21. Kistner, C. et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt. Express 16, 15006–15012 (2008)

    ADS  CAS  PubMed  Google Scholar 

  22. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    ADS  CAS  PubMed  Google Scholar 

  23. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997)

    CAS  Google Scholar 

  24. Devitt, S. J. et al. Photonic module: an on-demand resource for photonic entanglement. Phys. Rev. A 76, 052312 (2007)

    ADS  Google Scholar 

  25. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wineland, D. & Blatt, R. Entangled states of trapped atomic ions. Nature 453, 1008–1014 (2008)

    ADS  PubMed  Google Scholar 

  27. Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008)

    ADS  CAS  PubMed  Google Scholar 

  28. Garcia-Ripoll, J. J., Zoller, P. & Cirac, J. I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    ADS  CAS  PubMed  Google Scholar 

  29. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    ADS  CAS  Google Scholar 

  30. Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  31. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    ADS  CAS  PubMed  Google Scholar 

  32. Dür, W., Briegel, H. J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 (1999)

    ADS  Google Scholar 

  33. Duan, L.-M. & Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)

    ADS  MathSciNet  PubMed  Google Scholar 

  34. Morsch, O. & Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)

    ADS  CAS  Google Scholar 

  35. Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007)

    ADS  CAS  PubMed  Google Scholar 

  36. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009)

    ADS  CAS  Google Scholar 

  37. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009)

    ADS  Google Scholar 

  38. Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006)

    ADS  CAS  PubMed  Google Scholar 

  39. Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    ADS  CAS  PubMed  Google Scholar 

  40. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005)

    ADS  CAS  PubMed  Google Scholar 

  41. Braunstein, S. L. et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999)

    ADS  CAS  Google Scholar 

  42. Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003)

    ADS  CAS  PubMed  Google Scholar 

  43. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    ADS  CAS  Google Scholar 

  44. Uhrig, S. G. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)

    ADS  PubMed  Google Scholar 

  45. Liu, H. W. et al. A gate-defined silicon quantum dot molecule. Appl. Phys. Lett. 92, 222104 (2008)

    ADS  Google Scholar 

  46. Simmons, C. B. et al. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Nano Lett. 9, 3234–3238 (2009)

    ADS  CAS  PubMed  Google Scholar 

  47. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Google Scholar 

  48. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)

    ADS  Google Scholar 

  49. Tyryshkin, A. M. & Lyon, S. A. Data presented at the Silicon Qubit Workshop, 24–25 August (University of California, Berkeley; sponsored by Lawrence Berkeley National Laboratory and Sandia National Laboratory, 2009)

  50. Ladd, T. D., Maryenko, D., Yamamoto, Y., Abe, E. & Itoh, K. M. Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71, 14401 (2005)

    ADS  Google Scholar 

  51. Yang, A. et al. Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009)

    ADS  CAS  PubMed  Google Scholar 

  52. Batra, A., Weis, C. D., Reijonen, J., Persaud, A. & Schenkel, T. Detection of low energy single ion impacts in micron scale transistors at room temperature. Appl. Phys. Lett. 91, 193502 (2007)

    ADS  Google Scholar 

  53. O’Brien, J. L. et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 161401 (2001)

    ADS  Google Scholar 

  54. Schneider, C. et al. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2008)

    ADS  Google Scholar 

  55. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)

    ADS  PubMed  Google Scholar 

  56. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008)

    ADS  CAS  PubMed  Google Scholar 

  57. Press, D., Ladd, T. D., Zhang, B. Y. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    ADS  CAS  PubMed  Google Scholar 

  58. Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006)

    ADS  CAS  PubMed  Google Scholar 

  59. Harrison, J., Sellars, M. J. & Manson, N. B. Measurement of the optically induced spin polarisation of N-V centres in diamond. Diamond Related Mater. 15, 586–588 (2006)

    ADS  CAS  Google Scholar 

  60. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    PubMed  Google Scholar 

  61. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    ADS  CAS  PubMed  Google Scholar 

  62. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009)

    ADS  CAS  PubMed  Google Scholar 

  63. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008)

    ADS  CAS  PubMed  Google Scholar 

  64. Takahashi, S., Hanson, R., van Tol, J., Sherwin, M. S. & Awschalom, D. D. Quenching spin decoherence in diamond through spin bath polarization. Phys. Rev. Lett. 101, 047601 (2008)

    ADS  PubMed  Google Scholar 

  65. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009)

    ADS  CAS  Google Scholar 

  66. Neumann, P. et al. Scalable quantum register based on coupled electron spins in a room temperature solid. Nature Phys. 10.1038/nphys1536 (in the press)

  67. Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)

    ADS  Google Scholar 

  68. Wu, E. et al. Room temperature triggered single-photon source in the near infrared. New J. Phys. 9, 434 (2007)

    ADS  Google Scholar 

  69. Wang, C., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. At. Mol. Opt. Phys. 39, 37–41 (2006)

    ADS  Google Scholar 

  70. Sanaka, K., Pawlis, A., Ladd, T. D., Lischka, K. & Yamamoto, Y. Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103, 053601 (2009)

    ADS  PubMed  Google Scholar 

  71. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    ADS  CAS  Google Scholar 

  72. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    ADS  CAS  PubMed  Google Scholar 

  73. Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (2008)

    ADS  Google Scholar 

  74. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003)

    ADS  CAS  PubMed  Google Scholar 

  75. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    ADS  PubMed  Google Scholar 

  76. Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007)

    ADS  CAS  PubMed  Google Scholar 

  77. Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Preprint at 〈http://arxiv.org/abs/0909.4321〉 (2009)

  78. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    ADS  CAS  PubMed  Google Scholar 

  79. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 260, 240–244 (2009)

    ADS  Google Scholar 

  80. Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    ADS  CAS  PubMed  Google Scholar 

  81. Chow, J. M. et al. Entanglement metrology using a joint readout of superconducting qubits. Preprint at 〈http://arxiv.org/abs/0908.1955〉 (2009)

  82. Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–123 (2007)

    ADS  CAS  Google Scholar 

  83. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006)

    ADS  CAS  Google Scholar 

  84. Rippe, L., Julsgaard, B., Walther, A., Ying, Y. & Kroll, S. Experimental quantum-state tomography of a solid-state qubit. Phys. Rev. A 77, 022307 (2008)

    ADS  Google Scholar 

  85. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008)

    ADS  CAS  PubMed  Google Scholar 

  86. Morton, J. J. L. et al. Bang-bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2, 40–43 (2006)

    ADS  CAS  Google Scholar 

  87. Mason, N., Biercuk, M. J. & Marcus, C. M. Local gate control of a carbon nanotube double quantum dot. Science 303, 655–658 (2004)

    ADS  CAS  PubMed  Google Scholar 

  88. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007)

    ADS  CAS  Google Scholar 

  89. Platzman, P. M. & Dykman, M. I. Quantum computing with electrons floating on liquid helium. Science 284, 1967–1969 (1999)

    CAS  PubMed  Google Scholar 

  90. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    ADS  CAS  PubMed  Google Scholar 

  91. Tian, L., Rabl, P., Blatt, R. & Zoller, P. Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)

    ADS  CAS  PubMed  Google Scholar 

  92. Andre, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys. 2, 636–642 (2006)

    ADS  CAS  Google Scholar 

  93. Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001)

    ADS  Google Scholar 

  94. Privman, V., Vagner, I. D. & Kventsel, G. Quantum computation in quantum-Hall systems. Phys. Lett. A 239, 141–146 (1998)

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  95. Smelyanskiy, V. N., Petukhov, A. G. & Osipov, V. V. Quantum computing on long-lived donor states of Li in Si. Phys. Rev. B 72, 081304 (2005)

    ADS  Google Scholar 

  96. Tian, L. & Zoller, P. Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)

    ADS  CAS  PubMed  Google Scholar 

  97. Piermarocchi, C., Chen, P., Sham, L. J. & Steel, D. G. Optical RKKY interaction between charged semiconductor quantum dots. Phys. Rev. Lett. 89, 167402 (2002)

    ADS  CAS  PubMed  Google Scholar 

  98. Quinteiro, G. F., Fernandez-Rossier, J. & Piermarocchi, C. Long-range spin-qubit interaction mediated by microcavity polaritons. Phys. Rev. Lett. 97, 097401 (2006)

    ADS  CAS  PubMed  Google Scholar 

  99. Khitun, A., Ostroumov, R. & Wang, K. L. Spin-wave utilization in a quantum computer. Phys. Rev. A 64, 062304 (2001)

    ADS  Google Scholar 

  100. Barnes, C. H. W., Shilton, J. M. & Robinson, A. M. Quantum computation using electrons trapped by surface acoustic waves. Phys. Rev. B 62, 8410–8419 (2000)

    ADS  CAS  Google Scholar 

  101. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    ADS  CAS  PubMed  Google Scholar 

  102. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007)

    ADS  PubMed  Google Scholar 

  103. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  104. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)

    ADS  CAS  PubMed  Google Scholar 

  105. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    ADS  Google Scholar 

  106. Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008)

    ADS  CAS  Google Scholar 

  107. Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)

    ADS  PubMed  Google Scholar 

  108. Ryan, C. A., Laforest, M. & Laflamme, R. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11, 013034 (2009)

    ADS  Google Scholar 

  109. Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005)

    ADS  CAS  PubMed  Google Scholar 

  110. Emerson, J. et al. Symmetrized characterization of noisy quantum processes. Science 317, 1893–1896 (2007)

    ADS  CAS  PubMed  Google Scholar 

  111. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Hanson, M. D. Lukin, and W. D. Oliver for comments. We acknowledge support from NSF, EPSRC, QIP IRC, IARPA, ERC, the Leverhulme Trust, CREST-JST, DFG, BMBF and Landesstiftung BW. J.L.O’B. acknowledges a Royal Society Wolfson Merit Award.

Author Contributions All authors contributed to all aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. O’Brien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladd, T., Jelezko, F., Laflamme, R. et al. Quantum computers. Nature 464, 45–53 (2010). https://doi.org/10.1038/nature08812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08812

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics