Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exploring the thermodynamics of a universal Fermi gas

Abstract

One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit1,2. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap3,4,5, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories6,7,8,9,10,11,12,13,14,15. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system16,17,18, our equation of state at zero temperature has a 2 per cent accuracy and extends work19,20 on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons10,18,20,21,22.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the universal function h(η, ζ).
Figure 2: Schematic representation of our atomic sample.
Figure 3: Equation of state of a spin-balanced unitary Fermi gas.
Figure 4: Equation of state of the zero-temperature spin-imbalanced unitary gas h(η , 0).

Similar content being viewed by others

References

  1. Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

    Article  ADS  Google Scholar 

  2. Inguscio, M., Ketterle, W. & Salomon, C. eds. Proc. Int. School of Physics Enrico Fermi (Course CLXIV, IOS Press, Amsterdam, 2006)

    Google Scholar 

  3. Stewart, J., Gaebler, J., Regal, C. & Jin, D. Potential energy of a 40K Fermi gas in the BCS-BEC crossover. Phys. Rev. Lett. 97, 220406 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Luo, L., Clancy, B., Joseph, J., Kinast, J. & Thomas, J. Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev. Lett. 98, 080402 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Luo, L. & Thomas, J. Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys. 154, 1–29 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Burovski, E., Prokofev, N., Svistunov, B. & Troyer, M. Critical temperature and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96, 160402 (2006)

    Article  ADS  Google Scholar 

  7. Bulgac, A., Drut, J. & Magierski, P. Spin 1/2 fermions in the unitary regime: a superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006)

    Article  ADS  Google Scholar 

  8. Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 75, 023610 (2007)

    Article  ADS  Google Scholar 

  9. Combescot, R., Alzetto, F. & Leyronas, X. Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009)

    Article  ADS  Google Scholar 

  10. Lobo, C., Recati, A., Giorgini, S. & Stringari, S. Normal state of a polarized Fermi gas at unitarity. Phys. Rev. Lett. 97, 200403 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Liu, X., Hu, H. & Drummond, P. Virial expansion for a strongly correlated Fermi gas. Phys. Rev. Lett. 102, 160401 (2009)

    Article  ADS  Google Scholar 

  12. Rupak, G. Universality in a 2-component Fermi system at finite temperature. Phys. Rev. Lett. 98, 090403 (2007)

    Article  ADS  Google Scholar 

  13. Combescot, R., Recati, A., Lobo, C. & Chevy, F. Normal state of highly polarized Fermi gases: simple many-body approaches. Phys. Rev. Lett. 98, 180402 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Combescot, R. & Giraud, S. Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Prokof'ev, N. & Svistunov, B. Fermi-polaron problem: diagrammatic Monte Carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)

    Article  ADS  Google Scholar 

  16. Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Partridge, G., Li, W., Kamar, R., Liao, Y. & Hulet, R. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Nascimbene, S. et al. Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Shin, Y., Schunck, C., Schirotzek, A. & Ketterle, W. Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Shin, Y. Determination of the equation of state of a polarized Fermi gas at unitarity. Phys. Rev. A 77, 041603 (2008)

    Article  ADS  Google Scholar 

  21. Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)

    Article  ADS  Google Scholar 

  22. Schirotzek, A., Wu, C.-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009)

    Article  ADS  Google Scholar 

  23. Ho, T.-L. & Zhou, Q. Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nature Phys. 6, 131–134 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Spiegelhalder, F. et al. Collisional stability of 40K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett. 103, 223203 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Ho, T.-L. & Mueller, E. High temperature expansion applied to fermions near Feshbach resonance. Phys. Rev. Lett. 92, 160404 (2004)

    Article  ADS  Google Scholar 

  26. Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Carlson, J., Chang, S., Pandharipande, V. & Schmidt, K. Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Bulgac, A., Drut, J. & Magierski, P. Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature. Phys. Rev. A 78, 023625 (2008)

    Article  ADS  Google Scholar 

  29. Gubbels, K. & Stoof, H. Renormalization group theory for the imbalanced Fermi gas. Phys. Rev. Lett. 100, 140407 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Riedl, S., Guajardo, E., Kohstall, C., Denschlag, J. & Grimm, R. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas. Preprint at 〈http://arXiv.org/abs/0907.3814〉 (2009)

  31. Greiner, M., Regal, C. & Jin, D. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Inada, Y. et al. Critical temperature and condensate fraction of a fermion pair condensate. Phys. Rev. Lett. 101, 180406 (2008)

    Article  ADS  Google Scholar 

  33. Pilati, S. & Giorgini, S. Phase separation in a polarized Fermi gas at zero temperature. Phys. Rev. Lett. 100, 030401 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Horikoshi, M., Nakajima, S., Ueda, M. & Mukaiyama, T. Measurement of universal thermodynamic functions for a unitary Fermi gas. Science 327, 442–445 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Combescot, X. Leyronas, Y. Castin, A. Recati, S. Stringari, S. Giorgini, M. Zwierlein and T. Giamarchi for discussions and to C. Cohen-Tannoudji, J. Dalibard, F. Gerbier and G. Shlyapnikov for critical reading of the manuscript. We acknowledge support from ESF (Euroquam), SCALA, ANR FABIOLA, Région Ile de France (IFRAF), ERC and Institut Universitaire de France.

Author Contributions S.N. and N.N. contributed equally to this work. S.N., N.N. and K.J.J. took the experimental data, and all authors contributed to the data analysis and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nascimbène.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and Legend, a Supplementary Discussion and Supplementary References. (PDF 154 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimbène, S., Navon, N., Jiang, K. et al. Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010). https://doi.org/10.1038/nature08814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08814

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing