Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits

Abstract

Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence, ambiguities and controversies persist regarding the biogenicity and syngeneity of the record older than Late Archaean1,2,3. Non-biological processes are known to produce morphologies similar to some microfossils4,5, and hydrothermal fluids have the potential to produce abiotic organic compounds with depleted carbon isotope values6, making it difficult to establish unambiguous traces of life. Here we report the discovery of a population of large (up to about 300 μm in diameter) carbonaceous spheroidal microstructures in Mesoarchaean shales and siltstones of the Moodies Group, South Africa, the Earth’s oldest siliciclastic alluvial to tidal-estuarine deposits7. These microstructures are interpreted as organic-walled microfossils on the basis of petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as a lack of abiotic explanation falsifying a biological origin. These are the oldest and largest Archaean organic-walled spheroidal microfossils reported so far. Our observations suggest that relatively large microorganisms cohabited with earlier reported benthic microbial mats8 in the photic zone of marginal marine siliciclastic environments 3.2 billion years ago.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbonaceous microstructures in situ in thin sections and extracted from the rock by acid maceration.
Figure 2
Figure 3: Raman microspectroscopy.

References

  1. Buick, R. in Paleobiology II (eds Briggs, D.E.G. & Crowther, P.R.) 13–21 (Blackwell Science, 2001)

    Book  Google Scholar 

  2. Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. B 361, 869–886 (2006)

    Article  CAS  Google Scholar 

  3. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1105 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Garcıa-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194–1197 (2003)

    Article  ADS  Google Scholar 

  5. Brasier, M. D. M. c. L. o. u. g. h. i. n. N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Phil. Trans. R. Soc. B 361, 887–902 (2006)

    Article  CAS  Google Scholar 

  6. McCollom, T. M. & Seawald, J. S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Eriksson, K. A. & Simpson, E. L. Quantifying the oldest tidal record: the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Geology 28, 831–834 (2000)

    Article  ADS  Google Scholar 

  8. Noffke, N., Eriksson, K. A., Hazen, R. M. & Simpson, E. L. A new window into Early Archean life: microbial mats in Earth’s oldest siliciclatic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34, 253–256 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Pflug, H. D. Structured organic remains from the Fig Tree Series (Precambrian) of the Barberton mountain land (South Africa). Rev. Palaeobot. Palynol. 5, 9–29 (1967)

    Article  Google Scholar 

  10. Altermann, W. The oldest fossils of Africa—a brief reappraisal of reports from the Archean. J. Afr. Earth Sci. 33, 427–436 (2001)

    Article  ADS  Google Scholar 

  11. Noffke, N., Beukes, N., Bower, D., Hazen, R. M. & Swift, D. J. P. An actualistic perspective into Archean worlds—(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6, 5–20 (2008)

    Article  CAS  Google Scholar 

  12. Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3.416-Myr-old ocean. Nature 431, 549–552 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Javaux, E. J., Knoll, A. H. & Walter, M. R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121–132 (2004)

    Article  Google Scholar 

  14. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006)

    Article  CAS  Google Scholar 

  15. Heubeck, C. & Lowe, D. R. Depositional and tectonic setting of the Archean Moodies Group, Barberton Greenstone Belt, South Africa. Precambr. Res. 68, 257–290 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Kamo, S. L. & Davis, D. W. Reassessment of Archean foredeep sedimentation related to crustal shortening: a reinterpretation of the Barberton Mountain Land, South Africa, based on U–Pb dating. Tectonics 13, 167–192 (1994)

    Article  ADS  Google Scholar 

  17. Butterfield, N. J., Knoll, A. H. & Swett, N. Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Fossils Strata 34, 1–84 (1994)

    Google Scholar 

  18. Tice, M. M., Bostick, B. C. & Lowe, D. R. Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32, 37–40 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Marshall, C. P. et al. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambr. Res. 155, 1–23 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Pasteris, J. D. & Wopencka, B. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727–738 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Strauss, H. & Moore, T. B. in The Proterozoic Biosphere: a Multidisciplinary Study (eds Schopf, J.W. & Klein, C.) 709–798 (Cambridge Univ. Press, 1992)

    Book  Google Scholar 

  22. Deamer, D., Singaram, S., Rajamani, S., Kompanichenko, V. & Guggenheim, S. Self-assembly processes in the prebiotic environment. Phil. Trans. R. Soc. B 361, 1809–1818 (2006)

    Article  CAS  Google Scholar 

  23. Akashi, K.-I., Miyata, H., Itoh, H. & Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71, 3242–3250 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Van Zuilen, M. A., Chaussidon, M., Rollion-Bard, C. & Marty, B. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71, 655–669 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Jones, B. & Renaut, R. W. Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 54, 921–948 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Walsh, M. M. Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambr. Res. 54, 271–292 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Sugitani, K. et al. Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambr. Res. 158, 228–262 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandts, E. eds. in The Prokaryotes 3rd edn, Vol. 6, 1156–1163; Vol. 7, 31–115 (Springer, 2006)

    Book  Google Scholar 

  29. Waterbury, J. B. & Stanier, R. Y. Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiol. Rev. 42, 2–44 (1978)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Giraldo, J. Laval and N. Decloux for sample preparation; P. Compère for TEM imaging; C. Henrist for environmental SEM imaging and energy-dispersive X-ray analyses; T. Prokopiuk for carbon isotope analyses; J. Robertson for information on geology of the Agnes Gold Mine; and A. H. Knoll for comments on an earlier version of the manuscript. The study was supported by a University of Liège Impulsion Grant (CFRA0805) and a University of Liège grant (RCFRA0036-J) to E.J., a National Science Foundation grant (EAR-937 05-45484), a NASA Astrobiology Institute award (NNA04CC09A), a Natural Sciences and Engineering Research Council of Canada 938 Discovery grant to A.B., and Australian Research Council funding to C.M.

Author Contributions E.J. and A.B. conceived the study and wrote the paper. E.J. discovered the microfossils and performed the microscopic, SEM and TEM analyses, and interpreted the data. C.M. performed the Raman analyses and interpreted and wrote the results. A.B. conducted field work and carbon isotope analyses and interpreted the sedimentary structures. All authors commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle J. Javaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-2 with Legends, Supplementary Table 1 and Supplementary Notes. (PDF 1101 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javaux, E., Marshall, C. & Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938 (2010). https://doi.org/10.1038/nature08793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08793

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing