Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synchronized quorum of genetic clocks

Abstract

The engineering of genetic circuits with predictive functionality in living cells represents a defining focus of the expanding field of synthetic biology. This focus was elegantly set in motion a decade ago with the design and construction of a genetic toggle switch and an oscillator, with subsequent highlights that have included circuits capable of pattern generation, noise shaping, edge detection and event counting. Here we describe an engineered gene network with global intercellular coupling that is capable of generating synchronized oscillations in a growing population of cells. Using microfluidic devices tailored for cellular populations at differing length scales, we investigate the collective synchronization properties along with spatiotemporal waves occurring at millimetre scales. We use computational modelling to describe quantitatively the observed dependence of the period and amplitude of the bulk oscillations on the flow rate. The synchronized genetic clock sets the stage for the use of microbes in the creation of a macroscopic biosensor with an oscillatory output. Furthermore, it provides a specific model system for the generation of a mechanistic description of emergent coordinated behaviour at the colony level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synchronized genetic clocks.
Figure 2: Dynamics of the synchronized oscillator under several microfluidic flow conditions.
Figure 3: Spatiotemporal dynamics of the synchronized oscillators.
Figure 4: Modelling of synchronized genetic clocks.

Similar content being viewed by others

References

  1. Huygens, C. Œuvres complètes de Christiaan Huygens Vol. 17 (Martinus Nijhoff, The Hague, 1932)

    MATH  Google Scholar 

  2. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge, 2001)

    Book  Google Scholar 

  3. Strogatz, S. Sync (Penguin Books New York, 2004)

    Google Scholar 

  4. Vladimirov, A. G., Kozyreff, G. & Mandel, P. Synchronization of weakly stable oscillators and semiconductor laser arrays. Europhys. Lett. 61, 613–619 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Wiesenfeld, K., Colet, P. & Strogatz, S. Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404–407 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Lewandowski, W., Azoubib, J. & Klepczynski, W. GPS: primary tool for time transfer. Proc. IEEE 87, 163–172 (1999)

    Article  ADS  Google Scholar 

  7. Li, D., Wong, K., Hu, Y. & Sayeed, A. Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Process. Mag. 19, 17–29 (2002)

    Google Scholar 

  8. Winfree, A. T. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  CAS  Google Scholar 

  9. Mirollo, R. & Strogatz, S. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)

    Article  MathSciNet  Google Scholar 

  10. Elson, R. C. et al. Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 81, 5692–5695 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Jiang, Y.-J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Glass, L. Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Young, M. W. & Kay, S. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001)

    Article  CAS  Google Scholar 

  14. Chabot, J. R., Pedraza, J., Luitel, P. & van Oudenaarden, A. Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature 450, 1249–1252 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Kerckhoffs, R. C. P., McCulloch, A., Omens, J. & Mulligan, L. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Med. Image Anal. 13, 362–369 (2009)

    Article  Google Scholar 

  16. Grenier, F., Timofeev, I. & Steriade, M. Neocortical very fast oscillations (ripples, 80–200 Hz) during seizures: intracellular correlates. J. Neurophysiol. 89, 841–852 (2003)

    Article  Google Scholar 

  17. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007)

    Article  CAS  Google Scholar 

  19. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli . Nature 403, 339–342 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  ADS  CAS  Google Scholar 

  24. You, L., Cox, R., Weiss, R. & Arnold, F. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Basu, S., Gerchman, Y., Collins, C., Arnold, F. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009)

    Article  Google Scholar 

  29. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli . Cell 113, 597–607 (2003)

    Article  CAS  Google Scholar 

  31. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Tigges, M., Marquez-Lago, T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Cookson, N. A., Tsimring, L. S. & Hasty, J. The pedestrian watchmaker: Genetic clocks from engineered oscillations. FEBS Lett. 483, 3931–3937 (2009)

    Article  Google Scholar 

  35. Bennett, M. R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nature Rev. Genet. 10, 628–638 (2009)

    Article  CAS  Google Scholar 

  36. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Ann. Rev. Cell Dev. Biol. 21, 319–346 (2005)

    Article  CAS  Google Scholar 

  37. Liu, D. et al. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry 47, 7706–7714 (2008)

    Article  CAS  Google Scholar 

  38. Glossop, N. R. J., Lyons, L. C. & Hardin, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999)

    Article  CAS  Google Scholar 

  39. Lakin-Thomas, P. L. & Brody, S. Circadian rhythms in microorganisms: new complexities. Annu. Rev. Microbiol. 58, 489–519 (2004)

    Article  CAS  Google Scholar 

  40. McMillen, D., Kopell, N., Hasty, J. & Collins, J. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl Acad. Sci. USA 99, 679–684 (2002)

    Article  ADS  CAS  Google Scholar 

  41. Garcia-Ojalvo, J., Elowitz, M. & Strogatz, S. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl Acad. Sci. USA 101, 10955–10960 (2004)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  42. Reading, N. C. & Sperandio, V. Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254, 1–11 (2006)

    Article  CAS  Google Scholar 

  43. Cookson, S., Ostroff, N., Pang, W., Volfson, D. & Hasty, J. Monitoring dynamics of single-cell gene expression over multiple cell cycles. Mol. Syst. Biol. 1, 2005.0024 (2005)

    Article  Google Scholar 

  44. Mather, W., Bennett, M., Hasty, J. & Tsimring, L. Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett. 102, 068105 (2009)

    Article  ADS  Google Scholar 

  45. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  46. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  47. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203 (1997)

    Article  CAS  Google Scholar 

  48. Dunlap, P. V. & Greenberg, E. P. Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein. J. Bacteriol. 164, 45–50 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, P. W. et al. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44, 7559–7569 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stricker for helpful discussions on plasmid construction, and M. Bennett, K. Wiesenfeld and J. Collins for stimulating discussions during the preparation of the manuscript. This work was supported by the National Institutes of Health and General Medicine (GM69811), the DOE CSGF fellowship (to T.D.), and CONACyT (Mexico, grant 184646, to O.M.-P.).

Author Contributions All authors contributed extensively to the work presented in this paper. T.D. and O.M.-P. are equally contributing first authors, and L.T. and J.H. are equally contributing senior authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Hasty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures 1- 6 with Legends and Supplementary References. (PDF 621 kb)

Supplementary Movie 1

This movie shows time lapse fluorescence microscopy of TDQS1 cells at low flow rate in a 100x100μm trap. (MOV 4428 kb)

Supplementary Movie 2

This movie shows time lapse fluorescence microscopy of TDQS1 cells in a 2000x100x0.95μm open trap showing propagation of AHL at millimeter scale. (MOV 2066 kb)

Supplementary Movie 3

This movie shows time lapse microscopy of TDQS1 cells at high flow rate in a 100x100μm trap. (MOV 9496 kb)

Supplementary Movie 4

This movie shows zoomed time lapse fluorescence microscopy of TDQS1 cells in a 2000x100x0.95μm open trap showing close-up of cells and propagation of AHL. (MOV 16235 kb)

Supplementary Movie 5

This movie shows time lapse fluorescence microscopy of TDQS1 cells in a three dimensional 1000x400x4.0μm trap. (MOV 2448 kb)

Supplementary Movie 6

This movie shows simulation of the wave propagation within a uniform population of cells. (MOV 1268 kb)

Supplementary Movie 7

This movie shows simulation of the wave propagation within a growing dense cluster of cells. (MOV 288 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danino, T., Mondragón-Palomino, O., Tsimring, L. et al. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010). https://doi.org/10.1038/nature08753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08753

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing