Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes

Abstract

Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase–nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP state regulates immobilization of the histone H4 tail and proximal interactions.
Figure 2: SNF2h and ACF function as dimers of ATPases.
Figure 3: Visualization of SNF2h bound to the nucleosome in the presence of ADP•BeF x using electron microscopy.
Figure 4: Simple model for how a dimeric ACF moves nucleosomes.

Similar content being viewed by others

References

  1. Corona, D. F. et al. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo . PLoS Biol. 5, e232 (2007)

    Article  PubMed  Google Scholar 

  2. Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo . Genes Dev. 18, 170–183 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997)

    Article  CAS  Google Scholar 

  4. Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo . Mol. Cell 5, 355–365 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Poot, R. A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Bochar, D. A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl Acad. Sci. USA 97, 1038–1043 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nature Struct. Mol. Biol. 13, 1078–1083 (2006)

    Article  CAS  Google Scholar 

  9. Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Sun, F. L., Cuaycong, M. H. & Elgin, S. C. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol. 21, 2867–2879 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Corona, D. F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Aalfs, J. D., Narlikar, G. J. & Kingston, R. E. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem. 276, 34270–34278 (2001)

    Article  CAS  Google Scholar 

  13. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20, 3781–3788 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Längst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999)

    Article  Google Scholar 

  15. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Dürr, H., Flaus, A., Owen-Hughes, T. & Hopfner, K. P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 34, 4160–4167 (2006)

    Article  PubMed  Google Scholar 

  17. Dang, W. & Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306–8317 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003)

    Article  PubMed  Google Scholar 

  19. Clapier, C. R., Langst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl Acad. Sci. USA 98, 14316–14321 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fazzio, T. G., Gelbart, M. E. & Tsukiyama, T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo . Mol. Cell. Biol. 25, 9165–9174 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Dang, W., Kagalwala, M. N. & Bartholomew, B. Regulation of ISW2 by concerted action of the histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26, 7388–7396 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998)

    Article  CAS  Google Scholar 

  28. Naber, N., Purcell, T. J., Pate, E. & Cooke, R. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides. Biophys. J. 92, 172–184 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Rice, S. et al. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844–1854 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004)

    Article  CAS  Google Scholar 

  31. Lohman, T. M., Thorn, K. & Vale, R. D. Staying on track: common features of DNA helicases and microtubule motors. Cell 93, 9–12 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. Chin, J., Langst, G., Becker, P. B. & Widom, J. Fluorescence anisotropy assays for analysis of ISWI-DNA and ISWI-nucleosome interactions. Methods Enzymol. 376, 3–16 (2003)

    Article  Google Scholar 

  33. Dürr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005)

    Article  PubMed  Google Scholar 

  34. Thomä, N. H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nature Struct. Mol. Biol. 12, 350–356 (2005)

    Article  Google Scholar 

  35. Radermacher, M. et al. Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J. Cell Biol. 127, 411–423 (1994)

    Article  CAS  PubMed  Google Scholar 

  36. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nature Struct. Mol. Biol. 13, 339–346 (2006)

    Article  CAS  Google Scholar 

  38. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M. D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Cairns, B. R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nature Struct. Mol. Biol. 14, 989–996 (2007)

    Article  CAS  Google Scholar 

  40. Strohner, R. et al. A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nature Struct. Mol. Biol. 12, 683–690 (2005)

    Article  CAS  Google Scholar 

  41. Längst, G. & Becker, P. B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004)

    Article  PubMed  Google Scholar 

  42. Racki, L. R. & Narlikar, G. J. ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr. Opin. Genet. Dev. 18, 137–144 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol. 18, 243–257 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 10.1038/nature08627 (in the press)

  45. Fyodorov, D. V. & Kadonaga, J. T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 896–900 (2002)

    Article  ADS  Google Scholar 

  46. Gangaraju, V. K., Prasad, P., Srour, A., Kagalwala, M. N. & Bartholomew, B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35, 58–69 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. He, X., Fan, H. Y., Narlikar, G. J. & Kingston, R. E. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281, 28636–28647 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Widom for the 601 plasmid. We thank H. Madhani, M. D. Simon, and members of the Narlikar laboratory for helpful discussion and comments on the manuscript. We thank R. Howard for help with equilibrium analytical ultracentrifugation; W. Ross, J. Lin, S. Hota and B. Bartholomew for advice on footprinting, and C. Cunningham for assistance with nucleosome depiction. This work was supported by grants from the Sandler Family Supporting Foundation (Sandler Opportunity Award and New Technology Award in Basic Science to Y.C., Program for Breakthrough Biomedical Research (PBBR) Award to G.J.N.), UCSF Academic Senate Shared Equipment Grant (to Y.C.), grants from the National Institutes of Health (to R.C. and G.J.N.) and by the Beckman Foundation (to G.J.N.). P.D.P. and J.G.Y. were supported by US National Science Foundation Graduate Research Fellowships. G.J.N. is a Leukemia and Lymphoma Society Scholar. G.J.N. wishes to acknowledge D. Herschlag’s generative mentorship.

Author Contributions. L.R.R. and J.G.Y. performed the bulk of the experiments. J.G.Y. performed the equilibrium analytical ultracentrifugation and footprinting experiments. L.R.R. performed the fluorescence-based binding and FRET-based activity assays. N.N. and L.R.R. performed the EPR-based experiments, P.D.P. helped design the EPR experiments, T.J.P. conducted the deconvolution analysis of the EPR data, and R.C. helped design and analyse the EPR experiments. Y.C. and L.R.R. designed and performed the electron microscopy-based experiments, and Y.C. and A.A. conducted the analysis of the electron microscopy data. L.R.R., J.G.Y. and G.J.N. designed and interpreted most of the experiments. L.R.R., J.G.Y., R.C., Y.C. and G.J.N. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifan Cheng or Geeta J. Narlikar.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Figures 1-8 with Legends and Supplementary References. (PDF 3505 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racki, L., Yang, J., Naber, N. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009). https://doi.org/10.1038/nature08621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing