Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optomechanical crystals

Abstract

Periodicity in materials yields interesting and useful phenomena. Applied to the propagation of light, periodicity gives rise to photonic crystals1, which can be precisely engineered for such applications as guiding and dispersing optical beams2,3, tightly confining and trapping light resonantly4, and enhancing nonlinear optical interactions5. Photonic crystals can also be formed into planar lightwave circuits for the integration of optical and electrical microsystems6. In a photonic crystal, the periodicity of the host medium is used to manipulate the properties of light, whereas a phononic crystal uses periodicity to manipulate mechanical vibrations7,8,9,10,11,12,13. As has been demonstrated in studies of Raman-like scattering in epitaxially grown vertical cavity structures14 and photonic crystal fibres15, the simultaneous confinement of mechanical and optical modes in periodic structures can lead to greatly enhanced light–matter interactions. A logical next step is thus to create planar circuits that act as both photonic and phononic crystals16: optomechanical crystals. Here we describe the design, fabrication and characterization of a planar, silicon-chip-based optomechanical crystal capable of co-localizing and strongly coupling 200-terahertz photons and 2-gigahertz phonons. These planar optomechanical crystals bring the powerful techniques of optics and photonic crystals to bear on phononic crystals, providing exquisitely sensitive (near quantum-limited), optical measurements of mechanical vibrations, while simultaneously providing strong nonlinear interactions for optics in a large and technologically relevant range of frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optomechanical crystal design.
Figure 2: Photonic and phononic crystal mode spectroscopy.
Figure 3: Phononic mode tuning and transduction.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  CAS  Google Scholar 

  3. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Fine-tuned high-q photonic-crystal nanocavity. Opt. Express 13, 1202–1214 (2005)

    Article  ADS  Google Scholar 

  5. Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002)

    Article  ADS  Google Scholar 

  6. McNab, S. J., Moll, N. & Vlasov, Y. A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003)

    Article  ADS  Google Scholar 

  7. Olsson, R. H. & El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20, 012002, 1–13 (2009)

    Google Scholar 

  8. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Montero de Espinosa, F. R., Jiménez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Sánchez-Pérez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998)

    Article  ADS  Google Scholar 

  11. Robertson, W. M. & Rudy, J. F. Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. J. Acoust. Soc. Am. 104, 694–699 (1998)

    Article  ADS  Google Scholar 

  12. Olsson, R. H., El-Kady, I. F., Su, M. F., Tuck, M. R. & Fleming, J. G. Microfabricated vhf acoustic crystals and waveguides. Sens. Actuators A. 145–146, 87–93 (2008)

    Article  Google Scholar 

  13. Khelif, A., Djafari-Rouhani, B., Vasseur, J. O. & Deymier, P. A. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Phys. Rev. B 68, 024302 (2003)

    Article  ADS  Google Scholar 

  14. Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thierry-Mieg, V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. S. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial raman oscillators. Nature Phys. 5, 276–280 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006)

    Article  ADS  Google Scholar 

  17. Chan, J., Eichenfield, M., Camacho, R. & Painter, O. Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity. Opt. Express 17, 3802–3817 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Phys. 3, 201–205 (2009)

    ADS  CAS  Google Scholar 

  20. Johnson, S. G. et al. Perturbation theory for Maxwell's equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Michael, C. P., Borselli, M., Johnson, T. J., Chrystal, C. & Painter, O. An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express 15, 4745–4752 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micromechanical oscillator. Opt. Express 13, 5293–5301 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Mohanty, P. et al. Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 085416 (2002)

    Article  ADS  Google Scholar 

  24. Weinstein, D. & Bhave, S. A. Internal dielectric transduction of a 4.5 ghz silicon bar resonator. IEEE Int. Electron. Devices Meeting 415–418 (2007)

  25. Maldovan, M. & Thomas, E. Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Appl. Phys. B 83, 595–600 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Hossein-Zadeh, M. & Vahala, K. J. Photonic rf down-converter based on optomechanical oscillation. IEEE Photon. Technol. Lett. 20, 234–236 (2008)

    Article  ADS  Google Scholar 

  27. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Lin, Q. et al. Coherent mixing of mechanical excitations in nano-optomechanical structures. Preprint at <http://arxiv.org/abs/0908.1128> (2009)

  29. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005)

    Article  Google Scholar 

  30. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by a DARPA seed grant (grant no. HR0011-08-0002) and the National Science Foundation (EMT grant no. 0622246, MRSEC grant no. DMR-0520565, and CIAN grant no. EEC-0812072 through University of Arizona).

Author Contributions M.E., J.C., and R.C. performed the design, fabrication, and testing of devices. M.E., K.J.V., and O.P. developed the device concept and planned the measurements. All authors worked together to write the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Painter.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1, Supplementary Figures S1-S7 with Legends, Supplementary Methods, Supplementary Data and Supplementary References. (PDF 4151 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenfield, M., Chan, J., Camacho, R. et al. Optomechanical crystals . Nature 462, 78–82 (2009). https://doi.org/10.1038/nature08524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08524

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing