Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Volatile accretion history of the terrestrial planets and dynamic implications

Abstract

Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon—by a giant impact on the proto-Earth—and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U–Pb and I–Xe chronologies, which show that water delivery peaked 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fractionation of Zn isotopes is incompatible with volatilization.
Figure 2: Stepwise accretion of the elements on cooling of the solar nebula, shown as atomization enthalpy versus T50.
Figure 3: Stepwise accretion of the elements upon cooling of the solar nebula, shown as fraction condensed versus temperature.
Figure 4: The thermal structure of the planetary solar nebula: temperature at mid-plane of the nebular disk.
Figure 5: A tentative chronology of the Earth’s accretion.
Figure 6: Galena data and the young age of the Earth.

Similar content being viewed by others

References

  1. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002)

    CAS  PubMed  ADS  Google Scholar 

  2. Michael, P. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995)Brackets the geochemical behaviour of water during magma generation between that of rare-earth elements lanthanum and neodymium.

    CAS  ADS  Google Scholar 

  3. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451–455 (2002)

    CAS  PubMed  ADS  Google Scholar 

  4. Marty, B. & Yokochi, R. in Water in Nominally Anhydrous Minerals (eds Keppler, H. & Smyth, J. R) 421–450 (Rev. Mineral. Geochem. 62, Mineral. Soc. Am., 2006)

    Google Scholar 

  5. McDonough, W. F. & Ireland, T. R. Intraplate origin of komatiites inferred from trace-elements in glass inclusions. Nature 365, 432–434 (1993)

    CAS  ADS  Google Scholar 

  6. Lahaye, Y., Barnes, S. J., Frick, L. R. & Lambert, D. D. Re-Os isotopic study of komatiitic volcanism and magmatic sulfide formation in the southern Abitibi greenstone belt, Ontario, Canada. Can. Mineral. 39, 473–490 (2001)

    CAS  Google Scholar 

  7. Bercovici, D. & Karato, S. I. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    CAS  PubMed  ADS  Google Scholar 

  8. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000)

    CAS  ADS  Google Scholar 

  9. Ingrin, J. & Blanchard, M. in Water in Nominally Anhydrous Minerals (eds Keppler, H. & Smyth, J. R.) 291–320 (Rev. Mineral. Geochem. 62, Mineral. Soc. Am., 2006)

    Google Scholar 

  10. Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008)

    ADS  Google Scholar 

  11. Stevenson, D. J. & Lunine, J. I. Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988)

    CAS  ADS  Google Scholar 

  12. Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006)

    ADS  Google Scholar 

  13. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    CAS  ADS  Google Scholar 

  14. Taylor, S. R. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 125–143 (Lunar Planet. Inst., 1984)

    Google Scholar 

  15. Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. & White, W. M. K. U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306, 431–436 (1983)

    CAS  ADS  Google Scholar 

  16. Wasserburg, G. J., MacDonald, G. J. F., Hoyle, F. & Fowler, W. A. Relative contributions of uranium, thorium, and potassium to heat production in the Earth. Science 143, 465–467 (1964)

    CAS  PubMed  ADS  Google Scholar 

  17. Lodders, K. A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteorit. Planet. Sci. 33, A183–A190 (1998)

    Google Scholar 

  18. Dreibus, G. & Palme, H. Cosmochemical constraints on the sulfur content in the Earth's core. Geochim. Cosmochim. Acta 60, 1125–1130 (1996)

    CAS  ADS  Google Scholar 

  19. O'Neil, H. & Palme, H. in The Earth's Mantle, Composition, Structure and Evolution (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, 1998)

    Google Scholar 

  20. Humayun, M. & Clayton, R. N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 2131–2148 (1995)This shows that the lack of fractionation between the isotopes of potassium among planetary bodies argues against major devolatization of planetary bodies by impacts.

    CAS  ADS  Google Scholar 

  21. Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    CAS  ADS  Google Scholar 

  22. Moynier, F., Albarède, F. & Herzog, G. Isotopic fractionation of Zn, Cu and Fe in lunar materials. Geochim. Cosmochim. Acta 70, 6103–6117 (2006)

    CAS  ADS  Google Scholar 

  23. Richter, F. M. Timescales determining the degree of kinetic isotope fractionation by evaporation and condensation. Geochim. Cosmochim. Acta 68, 4971–4992 (2004)

    CAS  ADS  Google Scholar 

  24. Moynier, F. et al. Europium isotopic variations in Allende CAIs and the nature of mass-dependent fractionation in the solar nebula. Geochim. Cosmochim. Acta 70, 4287–4294 (2006)

    CAS  ADS  Google Scholar 

  25. Gast, P. W. Limitations on the composition of the upper mantle. J. Geophys. Res. 65, 1287–1297 (1960)

    ADS  Google Scholar 

  26. McDonough, W. F., Sun, S. S., Ringwood, A. E., Jagoutz, E. & Hofmann, A. W. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 56, 1001–1012 (1992)

    CAS  ADS  Google Scholar 

  27. Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972)

    CAS  ADS  Google Scholar 

  28. Larimer, J. W. Chemical fractionations in meteorites – I. Condensation of the elements. Geochim. Cosmochim. Acta 31, 1215–1238 (1967)

    CAS  ADS  Google Scholar 

  29. Wulfsberg, G. Inorganic Chemistry (University Science Books, 2000)

    Google Scholar 

  30. Ganapathy, R. & Anders, E. Bulk compositions of the Moon and Earth, estimated from meteorites. Proc. Lunar Planet Sci. Conf. 5, 1181–1206 (1974)

    ADS  Google Scholar 

  31. Davis, A. M. & Richter, F. M. in Treatise on Geochemistry Vol. 2 (ed. Davis, A. M.) 407–430 (Elsevier, 2006)

    Google Scholar 

  32. Wänke, H. Constitution of terrestrial planets. Phil. Trans. R. Soc. Lond. B 303, 287–302 (1981)

    ADS  Google Scholar 

  33. Ebel, D. S. & Grossman, L. Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339–366 (2000)

    CAS  ADS  Google Scholar 

  34. Chou, C. L. Fractionation of siderophile elements in the Earth's upper mantle. Proc. Lunar Planet. Sci. Conf. 9, 219–230 (1978)

    ADS  Google Scholar 

  35. Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–551 (Lunar Planet. Inst., 1986)

    Google Scholar 

  36. O'Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)A remarkable attempt at understanding the history of water transfer across the Solar System during planetary accretion.

    CAS  ADS  Google Scholar 

  37. Owen, T. & Bar-Nun, A. Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995)

    CAS  PubMed  ADS  Google Scholar 

  38. Bockelée-Morvan, D. et al. Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998)

    ADS  Google Scholar 

  39. Huebner, W. Composition of comets: observations and models. Earth Moon Planets 89, 179–195 (2000)

    CAS  ADS  Google Scholar 

  40. Lécuyer, C., Gillet, P. & Robert, F. The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249–261 (1998)

    ADS  Google Scholar 

  41. Robert, F. The origin of water on Earth. Science 293, 1056–1058 (2001)

    CAS  PubMed  Google Scholar 

  42. Morbidelli, A. et al. Source regions and time scales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)A breakthrough paper on accretion dynamics, demonstrating the prominence of water delivery to the inner Solar System from Jupiter and beyond.

    CAS  ADS  Google Scholar 

  43. Raymond, S. N., Quinn, T. & Lunine, J. I. High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006)

    ADS  Google Scholar 

  44. Muralidharan, K., Deymier, P., Stimpfl, M., de Leeuw, N. H. & Drake, M. J. Origin of water in the inner Solar System: a kinetic Monte Carlo study of water adsorption on forsterite. Icarus 198, 400–407 (2008)

    ADS  Google Scholar 

  45. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)An outstanding 182Hf–182W data set critical for the discussion of the early lunar chronology.

    CAS  PubMed  ADS  Google Scholar 

  46. Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002)

    CAS  PubMed  ADS  Google Scholar 

  47. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    CAS  PubMed  ADS  Google Scholar 

  48. Warren, P. H. in Treatise on Geochemistry Vol. 1 (ed. Davis, A. M.) 559–599 (Elsevier, 2005)

    Google Scholar 

  49. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. Possible solar noble-gas component in Hawaiian basalts. Nature 349, 149–151 (1991)

    CAS  ADS  Google Scholar 

  50. Caffee, M. W. et al. Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science 285, 2115–2118 (1999)The first incontrovertible evidence that the Earth’s atmosphere and mantle have different abundances of stable xenon isotopes.

    CAS  PubMed  Google Scholar 

  51. Kunz, J. Is there solar argon in the Earth's mantle? Nature 399, 649–650 (1999)

    CAS  ADS  Google Scholar 

  52. Trieloff, M., Kunz, J. & Allègre, C. J. Noble gas systematics of the Reunion mantle plume source and the origin of primordial noble gases in Earth's mantle. Earth Planet. Sci. Lett. 200, 297–313 (2002)

    CAS  ADS  Google Scholar 

  53. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–196 (2008)

    CAS  PubMed  ADS  Google Scholar 

  54. Albarede, F. & Juteau, M. Unscrambling the lead model ages. Geochim. Cosmochim. Acta 48, 207–212 (1984)

    CAS  ADS  Google Scholar 

  55. Galer, S. J. G. & Goldstein, S. L. in Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S. R.) 75–98 (Geophys. Monogr. 95, AGU, 1996)

    Google Scholar 

  56. Palme, H. & O'Neill, H. S. C. in Treatise on Geochemistry Vol. 2 (ed. Carlson, R. W.) 1–38 (Elsevier, 2005)

    Google Scholar 

  57. Premo, W. R., Tatsumoto, M., Misawa, K., Nakamura, N. & Kita, N. T. in Planetary Petrology and Geochemistry: The Lawrence A. Taylor 60th Birthday volume (eds Snyder, G. A., Neal, C. R. & Ernst, W. G.) 207–240 (Bellwether, 1999)

    Google Scholar 

  58. Pepin, R. O. & Phinney, D. The formation interval of the Earth. Lunar Planet. Sci. VII, 683–684 (1976)

    ADS  Google Scholar 

  59. Allegre, C. J., Manhes, G. & Gopel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995)

    CAS  ADS  Google Scholar 

  60. Ozima, M. & Podosek, F. A. Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. B 104, 25493–25499 (1999)A reference paper on how short-lived radioactivities based on Xe isotopes constrain the age of the Earth and of its atmosphere.

    CAS  ADS  Google Scholar 

  61. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996)

    CAS  ADS  Google Scholar 

  62. Boyet, M. et al. 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–442 (2003)

    CAS  ADS  Google Scholar 

  63. Gurnis, M. & Davies, G. F. The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett. 13, 541–544 (1986)

    ADS  Google Scholar 

  64. Shieh, S. R., Mao, H.-k., Hemley, R. J. & Ming, L. C. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet. Sci. Lett. 159, 13–23 (1998)

    CAS  ADS  Google Scholar 

  65. Kawamoto, T. in Water in Nominally Anhydrous Minerals (eds Keppler, H. & Smyth, J. R.) 273–289 (Rev. Mineral. Geochem. 62, Mineral. Soc. Am., 2006)

    Google Scholar 

  66. Smyth, J. R. in Water in Nominally Anhydrous Minerals 85–115 (Rev. Mineral. Geochem. 62, Mineral. Soc. Am., 2006)

    Google Scholar 

  67. Lawrence, J. F. & Wysession, M. E. in Earth's Deep Water Cycle (eds Jacobsen, S. D. & van der Lee, S.) 251–260 (AGU Monograph 168, Am. Geophys. Un., 2006)

    Google Scholar 

  68. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    CAS  ADS  Google Scholar 

  69. Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere — constraints imposed by laboratory experiments. J. Geophys. Res. B 100, 17587–17602 (1995)

    ADS  Google Scholar 

  70. O'Neill, C., Jellinek, A. M. & Lenardic, A. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007)

    CAS  ADS  Google Scholar 

  71. Albarède, F. in Earth's Deep Mantle: Structure, Composition, and Evolution (eds van der Hilst, R. D., Bass, J., Matas, J. & Trampert, J.) 27–46 (Geophys. Monogr. 160, Am. Geophys. Union, 2005)

    Google Scholar 

  72. Rosenblatt, P., Pinet, P. C. & Thouvenot, E. Comparative hypsometric analysis of Earth and Venus. Geophys. Res. Lett. 21, 465–468 (1994)

    ADS  Google Scholar 

  73. Hauck, S. A., Phillips, R. J. & Price, M. H. Venus: crater distribution and plains resurfacing models. J. Geophys. Res. E 103, 13635–13642 (1998)

    ADS  Google Scholar 

  74. Phillips, R. J. et al. Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948 (1992)

    ADS  Google Scholar 

  75. Barabash, S. et al. The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)

    CAS  PubMed  ADS  Google Scholar 

  76. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    CAS  ADS  Google Scholar 

  77. Lunine, J. I., Chambers, J., Morbidelli, A. & Leshin, L. A. The origin of water on Mars. Icarus 165, 1–8 (2003)

    CAS  ADS  Google Scholar 

  78. Carr, M. H. & Wänke, H. Earth and Mars: water inventories as clues to accretional histories. Icarus 98, 61–71 (1992)

    CAS  ADS  Google Scholar 

  79. Jakosky, B. M. & Phillips, R. J. Mars' volatile and climate history. Nature 412, 237–244 (2001)

    CAS  PubMed  ADS  Google Scholar 

  80. McSween, H. Y. et al. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001)

    CAS  PubMed  ADS  Google Scholar 

  81. Medard, E. & Grove, T. L. Early hydrous melting and degassing of the Martian interior. J. Geophys. Res. Planets 111 10.1029/2006JE002742 (2006)

  82. Bouvier, A., Blichert-Toft, J., Vervoort, J. D. & Albarede, F. The age of SNC meteorites and the antiquity of the Martian surface. Earth Planet. Sci. Lett. 240, 221–233 (2005)

    CAS  ADS  Google Scholar 

  83. Nimmo, F. & Stevenson, D. J. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11969–11979 (2000)

    ADS  Google Scholar 

  84. Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004)

    CAS  PubMed  ADS  Google Scholar 

  85. Albarede, F. & Blichert-Toft, J. in Origins of Life: Self-Organization and/or Biological Evolution? (eds Gerin, M. & Maurel, M. C.) 1–12 (EDP Sciences, Paris, 2009)

    Google Scholar 

  86. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007)

    CAS  ADS  Google Scholar 

  87. Luck, J.-M., Othman, D. B. & Albarede, F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta 69, 5351–5363 (2005)The strange behaviour of two non-traditional stable isotope systems and their bearing on planetary accretion.

    CAS  ADS  Google Scholar 

  88. Fromang, S., Terquem, C. & Balbus, S. The ionization fraction in alpha models of protoplanetary disks. Mon. Not. R. Astron. Soc. 329, 18–28 (2002)

    CAS  ADS  Google Scholar 

  89. Tatsumoto, M., Knight, R. J. & Allegre, C. J. Time differences in formation of meteorites as determined from ratio of lead-207 to lead-206. Science 180, 1279–1283 (1973)

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to J. Blichert-Toft, S. Labrosse and H. Ohmoto for suggestions on the manuscript. Reviews by A. Morbidelli, M. Humayun and M. Drake were particularly helpful. Thanks to A. Levander and C.-T. Lee, I was able to spend enough quiet time at Rice University to bring this work to completion. This work was supported by the Agence Nationale de la Recherche and the Programme National de Planétologie (INSU-CEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Albarède.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009). https://doi.org/10.1038/nature08477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08477

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing