Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GRB 090423 at a redshift of z ≈ 8.1

Abstract

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = . This burst happened when the Universe was only about 4 per cent of its current age3. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rest-frame γ-ray and X-ray light curves for bursts at different redshifts.
Figure 2: TNG spectrum of the near-infrared afterglow.

Similar content being viewed by others

References

  1. Greiner, J. et al. GRB 080913 at redshift 6.7. Astrophys. J. 693, 1610–1620 (2009)

    Article  CAS  ADS  Google Scholar 

  2. Iye, M. et al. A galaxy at a redshift z = 6.96. Nature 443, 186–188 (2006)

    Article  CAS  ADS  Google Scholar 

  3. Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  4. Palmer, D. M. et al. GRB 090423: Swift-BAT refined analysis. GCN Circ. 9204, (2009)

  5. Stratta, G. & Perri, M. GRB 090423: Swift-XRT refined analysis. GCN Circ. 9212, (2009)

  6. De Pasquale, M. & Krimm, H. GRB090423 - Swift/UVOT upper limits. GCN Circ. 9210, (2009)

  7. Tanvir, N. et al. A γ-ray burst at a redshift of z ≈ 8.2. Nature 10.1038/nature08459 (this issue)

  8. Thoene, C. C. et al. GRB 090423: TNG Amici spectrum. GCN Circ. 9216, (2009)

  9. Fernández-Soto, A. et al. GRB 090423: refined TNG analysis. GCN Circ. 9222, (2009)

  10. von Kienlin, A. GRB 090423: Fermi GBM observation. GCN Circ. 9229, (2009)

  11. Mészáros, P. Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2322 (2006)

    Article  ADS  Google Scholar 

  12. Zhang, B. Gamma-ray bursts in the Swift era. Chin. J. Astron. Astrophys. 7, 1–50 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Amati, L. et al. On the consistency of peculiar GRBs 060218 and 060614 with the E p,iE iso correlation. Astron. Astrophys. 463, 913–919 (2007)

    Article  ADS  Google Scholar 

  14. Schady, P. et al. Dust and gas in the local environments of gamma-ray bursts. Mon. Not. R. Astron. Soc. 377, 273–284 (2007)

    Article  ADS  Google Scholar 

  15. Stratta, G. et al. Dust properties at z = 6.3 in the host galaxy of GRB 050904. Astrophys. J. 661, 9–12 (2007)

    Article  ADS  Google Scholar 

  16. Schneider, R. et al. First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002)

    Article  CAS  ADS  Google Scholar 

  17. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  CAS  ADS  Google Scholar 

  18. Nagamine, K. et al. Tracing early structure formation with massive starburst galaxies and their implications for reionization. N. Astron. 50, 29–34 (2006)

    Article  CAS  ADS  Google Scholar 

  19. Choudhury, T. R., Ferrara, A. & Gallerani, S. On the minimum mass of reionization sources. Mon. Not. R. Astron. Soc. 385, L58–L62 (2008)

    Article  ADS  Google Scholar 

  20. Fruchter, A. S. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 7092, 463–468 (2006)

    Article  ADS  Google Scholar 

  21. Lamb, D. Q. & Reichart, D. E. Gamma-ray bursts as a probe of the very high redshift universe. Astrophys. J. 536, 1–18 (2000)

    Article  ADS  Google Scholar 

  22. Guetta, D., Piran, T. & Waxman, E. The luminosity and angular distributions of long-duration gamma-ray bursts. Astrophys. J. 619, 412–419 (2005)

    Article  ADS  Google Scholar 

  23. Bromm, V. & Loeb, A. High-redshift gamma-ray bursts from population III progenitors. Astrophys. J. 642, 382–388 (2006)

    Article  ADS  Google Scholar 

  24. Salvaterra, R. & Chincarini, G. The gamma-ray burst luminosity function in the light of the Swift 2 year data. Astrophys. J. 656, 49–52 (2007)

    Article  ADS  Google Scholar 

  25. Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006)

    Article  CAS  ADS  Google Scholar 

  26. Salvaterra, R. et al. Evidence for luminosity evolution of long gamma-ray bursts in Swift data. Mon. Not. R. Astron. Soc. 396, 299–303 (2009)

    Article  CAS  ADS  Google Scholar 

  27. Chary, R.-R. The stellar initial mass function at the epoch of reionization. Astrophys. J. 680, 32–40 (2008)

    Article  CAS  ADS  Google Scholar 

  28. Bolton, J. S. & Haehnelt, M. G. The observed ionization rate of the intergalactic medium and the ionizing emissivity at z ≥ 5: evidence for a photon-starved and extended epoch of reionization. Mon. Not. R. Astron. Soc. 382, 325–341 (2007)

    Article  ADS  Google Scholar 

  29. Furlanetto, S. R. & Mesinger, A. The ionizing background at the end of reionization. Mon. Not. R. Astron. Soc. 394, 1667–1673 (2009)

    Article  ADS  Google Scholar 

  30. Stiavelli, M. From First Light to Reionization: The End of the Dark Ages (Wiley-VCH, 2009)

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge the TNG staff for useful support during target-of-opportunity observations, in particular A. Fiorenzano, N. Sacchi and A. G. de Gurtubai Escudero. We thank A. Ferrara for discussions. This research was supported by the Agenzia Spaziale Italiana, the Ministero dell’Università e della Ricerca, the Ministero degli Affari Esteri, NASA and the US National Science Foundation.

Author Contributions Direct analysis of the Swift data: S. Campana, G. Chincarini, C.G., R.M., S.D.B., M.D.P., F.E.M., J.N., J.L.R., G. Cusumano, E.E.F., P.G., S.T.H., J.M., C.B.M., C.P., D.M.P.; analysis of the TNG and photometric data: M.D.V., S. Covino, P.D’A., A.F.-S., C.C.T., L.A.A., F.M., V.D’E., F.F., D.F., L.K.H., E. Maiorano, E. Molinari, S.M.; management of optical follow-up: P.D’A., L.A.A., V.D’E., E. Maiorano, S.M., G.A., P.F., G.L.I., N.M., E.P., S.P., G.T., V.T.; interpretation of the GRB properties: R.S., M.D.V., S. Campana, G. Chincarini, S. Covino, P.D’A., A.F.-S., C.G., R.M., C.C.T., L.A., E.P., L.S., K.H.; modelling of the GRB luminosity function: R.S., M.D.V., S. Campana, G. Chincarini, C.G., D.G., G.T. All authors made contributions through their involvement in the programmes from which the data derive, and contributed to the interpretation, content and discussion presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Salvaterra.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary References and Supplementary Figures 1-6 with Legends. (PDF 628 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvaterra, R., Valle, M., Campana, S. et al. GRB 090423 at a redshift of z ≈ 8.1. Nature 461, 1258–1260 (2009). https://doi.org/10.1038/nature08445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08445

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing