Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules

Abstract

It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens1,2. How exactly these gradients are formed, however, remains unclear3,4,5,6,7,8,9,10,11,12. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FCS setup to investigate morphogen characteristics.
Figure 2: Labelling strategy for Fgf8.
Figure 3: Fgf8–EGFP diffuse as single molecules in the extracellular space.
Figure 4: Endocytosis regulates extracellular Fgf8 concentration gradient.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Article  CAS  Google Scholar 

  2. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004)

    Article  CAS  Google Scholar 

  3. Crick, F. Diffusion in embryogenesis. Nature 225, 420–422 (1970)

    Article  ADS  CAS  Google Scholar 

  4. Kerszberg, M. & Wolpert, L. Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–114 (1998)

    Article  CAS  Google Scholar 

  5. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–992 (2000)

    Article  CAS  Google Scholar 

  6. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000)

    Article  CAS  Google Scholar 

  7. McDowell, N., Gurdon, J. B. & Grainger, D. J. Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo. Int. J. Dev. Biol. 45, 199–207 (2001)

    CAS  PubMed  Google Scholar 

  8. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, D. W. & Wieschaus, E. F. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. USA 102, 18403–18407 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007)

    Article  CAS  Google Scholar 

  10. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007)

    Article  CAS  Google Scholar 

  12. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008)

    Article  CAS  Google Scholar 

  13. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998)

    CAS  PubMed  Google Scholar 

  14. Reifers, F., Walsh, E. C., Leger, S., Stainier, D. Y. & Brand, M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127, 225–235 (2000)

    CAS  PubMed  Google Scholar 

  15. Goldfarb, M. Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev. 7, 311–325 (1996)

    Article  CAS  Google Scholar 

  16. Fürthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. Sprouty4 acts in vivo as a feedback-induced antagonist of FGF signalling in zebrafish. Development 128, 2175–2186 (2001)

    PubMed  Google Scholar 

  17. Raible, F. & Brand, M. Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signalling during early zebrafish nervous system development. Mech. Dev. 107, 105–117 (2001)

    Article  CAS  Google Scholar 

  18. Scholpp, S. & Brand, M. Endocytosis controls spreading and effective signalling range of Fgf8 protein. Curr. Biol. 14, 1834–1841 (2004)

    Article  CAS  Google Scholar 

  19. Rigler, R., Mets, Ü., Widengren, J. & Kask, P. Fluorescence correlation spectroscopy with high count rate and low-background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 (1993)

    Article  CAS  Google Scholar 

  20. Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nature Methods 3, 83–89 (2006)

    Article  CAS  Google Scholar 

  21. Amaya, E., Musci, T. J. & Kirschner, M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 (1991)

    Article  CAS  Google Scholar 

  22. Ries, J., Yu, S. R., Burkhardt, M., Brand, M. & Schwille, P. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nature Methods 10.1038/nmeth.1355 (2 August 2009)

  23. Petrášek, Z. & Schwille, P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94, 1437–1448 (2008)

    Article  Google Scholar 

  24. Brinkmeier, M., Dörre, K., Stephan, J. & Eigen, M. Two beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal. Chem. 71, 609–616 (1999)

    Article  CAS  Google Scholar 

  25. Dertinger, T. et al. Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8, 433–443 (2007)

    Article  CAS  Google Scholar 

  26. Hou, S., Maccarana, M., Min, T. H., Strate, I. & Pera, E. M. The secreted serine protease xHtrA1 stimulates long-range FGF signalling in the early Xenopus embryo. Dev. Cell 13, 226–241 (2007)

    Article  CAS  Google Scholar 

  27. Baeg, G. H., Selva, E. M., Goodman, R. M., Dasgupta, R. & Perrimon, N. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulphate Proteoglycan receptors. Dev. Biol. 276, 89–100 (2004)

    Article  CAS  Google Scholar 

  28. Desai, U. R., Wang, H. & Linhardt, R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum . Arch. Biochem. Biophys. 306, 461–468 (1993)

    Article  CAS  Google Scholar 

  29. Robinson, M. S., Watts, C. & Zerial, M. Membrane dynamics in endocytosis. Cell 84, 13–21 (1996)

    Article  CAS  Google Scholar 

  30. Westerfield, M. The Zebrafish Book; a Guide for the Laboratory use of Zebrafish (Danio Rerio) (Univ. of Oregon Press, 2000)

    Google Scholar 

  31. Petrov, E. P., Ohrt, T., Winkler, R. G. & Schwille, P. Diffusion and segmental dynamics of double-stranded DNA. Phys. Rev. Lett. 97, 258101 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Burkhardt, M. & Schwille, P. Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Opt. Express 14, 5013–5020 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank members of the Brand and Schwille laboratories for discussions; A. Picker and K. Heinze for help with initial FCS measurements; B. Lutz for discussions; A. Oates, C. Boekel, A. Picker and P. Scott for comments on the manuscript; M. Fischer and K. Sipple for fish care; and A. Machate and B. Borgonov for technical assistance. This work was supported by an HFSP network grant (050503-50) to M.Br. and P.S., and by the EU Endotrack grant (050503-52) to M.Br.

Author Contributions S.R.Y. and M.Bu. performed the experiments, analysed the data and wrote the paper. M.N., J.R. and Z.P. provided advice on experimental design, data evaluation and interpretation. S.S. provided protocols for initial FCS measurements. P.S. and M.Br. initiated and supervised the collaboration, designed the project, analysed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petra Schwille or Michael Brand.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1-8, Supplementary References and Supplementary Figures 1-10 with Legends. (PDF 1094 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Burkhardt, M., Nowak, M. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009). https://doi.org/10.1038/nature08391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08391

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing