Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implications of chimaeric non-co-linear transcripts

Abstract

Deep sequencing of 'transcriptomes' — the collection of all RNA transcripts produced at a given time — from worms to humans reveals that some transcripts are composed of sequence segments that are not co-linear, with pieces of sequence coming from distant regions of DNA, even different chromosomes. Some of these 'chimaeric' transcripts are formed by genetic rearrangements, but others arise during post-transcriptional events. The 'trans-splicing' process in lower eukaryotes is well understood, but events in higher eukaryotes are not. The existence of such chimaeric RNAs has far-reaching implications for the potential information content of genomes and the way it is arranged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of possible organization of the information in DNA and its transfer to RNA.
Figure 2: Characterization of a chimaeric transcript.
Figure 3: Model specialized transcription factory for transcription and the formation of chimaeric RNAs.
Figure 4: Co-linear and non-co-linear combinations of modules of information.

Similar content being viewed by others

References

  1. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155–159 (2009).

    Article  CAS  Google Scholar 

  2. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  Google Scholar 

  3. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  4. Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).

    Article  ADS  CAS  Google Scholar 

  5. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Jones, P. A. et al. Moving AHEAD with an international human epigenome project. Nature 454, 711–715 (2008).

    Article  ADS  CAS  Google Scholar 

  7. Hert, D. G., Fredlake, C. P. & Barron, A. E. Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29, 4618–4626 (2008).

    Article  CAS  Google Scholar 

  8. Ramadan, N., Flockhart, I., Booker, M., Perrimon, N. & Mathey-Prevot, B. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells . Nature Protocols 2, 2245–2264 (2007).

    Article  CAS  Google Scholar 

  9. Amaral, P. P. & Mattick, J. S. Noncoding RNA in development. Mamm. Genome 19, 454–492 (2008).

    Article  CAS  Google Scholar 

  10. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R. & Mehler, M. F. RNA regulation of epigenetic processes. Bioessays 31, 51–59 (2009).

    Article  CAS  Google Scholar 

  11. Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  Google Scholar 

  12. Ashe, A. & Whitelaw, E. Another role for RNA: a messenger across generations. Trends Genet. 23, 8–10 (2007).

    Article  CAS  Google Scholar 

  13. Sutton, R. E. & Boothroyd, J. C. Evidence for trans splicing in trypanosomes. Cell 47, 527–535 (1986).

    Google Scholar 

  14. Krause, M. & Hirsh, D. A trans-spliced leader sequence on actin mRNA in C. elegans . Cell 49, 753–761 (1987).

    Article  CAS  Google Scholar 

  15. Tessier, L. H. et al. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena . EMBO J. 10, 2621–2625 (1991).

    Article  CAS  Google Scholar 

  16. Rajkovic, A., Davis, R. E., Simonsen, J. N. & Rottman, F. M. A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni . Proc. Natl Acad. Sci. USA 87, 8879–8883 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Davis, R. E. et al. RNA trans-splicing in Fasciola hepatica. Identification of a spliced leader (SL) RNA and SL sequences on mRNAs. J. Biol. Chem. 269, 20026–20030 (1994).

    CAS  PubMed  Google Scholar 

  18. Li, X., Zhao, L., Jiang, H. & Wang, W. Short homologous sequences are strongly associated with the generation of chimeric RNAs in eukaryotes. J. Mol. Evol. 68, 56–65 (2009). This paper includes computational analyses of human, mouse and fly RNA databases to identify chimaeric RNAs and short repeat sequences located at the junction sites forming the chimaeric transcripts.

    Article  ADS  CAS  Google Scholar 

  19. Li, H., Wang, J., Mor, G. & Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321, 1357–1361 (2008). This paper identifies chimaeric RNA and protein from JAZF1 and JJAZ1 genes in normal and transformed endometrial cells.

    Article  ADS  CAS  Google Scholar 

  20. Eychene, A., Rocques, N. & Pouponnot, C. A new MAFia in cancer. Nature Rev. Cancer 8, 683–693 (2008).

    Article  CAS  Google Scholar 

  21. Rickman, D. S. et al. SLC45A3ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 69, 2734–2738 (2009). This paper identifies chimaeric RNA from the SLC45A3 and ELK4 genes in normal and transformed prostate cells.

    Article  CAS  Google Scholar 

  22. Janz, S., Potter, M. & Rabkin, C. S. Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer 36, 211–223 (2003).

    Article  CAS  Google Scholar 

  23. Maher, C. A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97–101 (2009).

    Article  ADS  CAS  Google Scholar 

  24. Denoeud, F. et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 17, 746–759 (2007). This paper identifies and characterizes chimaeric RNAs in normal tissue and transformed cell lines mapping in the 1% of the human genome analysed by the ENCODE studies.

    Article  CAS  Google Scholar 

  25. Djebali, S. et al. Efficient targeted transcript discovery via array-based normalization of RACE libraries. Nature Methods 5, 629–635 (2008).

    Article  CAS  Google Scholar 

  26. Akiva, P. et al. Transcription-mediated gene fusion in the human genome. Genome Res. 16, 30–36 (2006).

    Article  CAS  Google Scholar 

  27. Parra, G. et al. Tandem chimerism as a means to increase protein complexity in the human genome. Genome Res. 16, 37–44 (2006).

    Article  MathSciNet  CAS  Google Scholar 

  28. Kapranov, P. et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15, 987–997 (2005).

    Article  CAS  Google Scholar 

  29. Bruzik, J. P. & Maniatis, T. Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature 360, 692–695 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Bruzik, J. P. & Maniatis, T. Enhancer-dependent interaction between 5′ and 3′ splice sites in trans . Proc. Natl Acad. Sci. USA 92, 7056–7059 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42, 1–26 (1979).

    Article  CAS  Google Scholar 

  32. Hastings, K. E. SL trans-splicing: easy come or easy go? Trends Genet. 21, 240–247 (2005).

    Article  CAS  Google Scholar 

  33. Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993).

    Article  CAS  Google Scholar 

  34. Mitchell, J. A. & Fraser, P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 22, 20–25 (2008).

    Article  CAS  Google Scholar 

  35. Pombo, A. & Cook, P. R. The localization of sites containing nascent RNA and splicing factors. Exp. Cell Res. 229, 201–203 (1996).

    Article  CAS  Google Scholar 

  36. Pombo, A. et al. Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J. 17, 1768–1778 (1998).

    Article  CAS  Google Scholar 

  37. Carter, D. R., Eskiw, C. & Cook, P. R. Transcription factories. Biochem. Soc. Trans. 36, 585–589 (2008).

    Article  CAS  Google Scholar 

  38. Osborne, C. S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh PLoS Biol. 5, e192 (2007).

    Article  Google Scholar 

  39. Dostie, J., Zhan, Y. & Dekker, J. Chromosome conformation capture carbon copy technology. Curr. Protocols Mol. Biol. Ch. 21, 14 (2007).

  40. Margulies, E. H., Program, N. C. S. & Green, E. D. Detecting highly conserved regions of the human genome by multispecies sequence comparisons. Cold Spring Harb. Symp. Quant. Biol. 68, 255–263 (2003).

    Article  CAS  Google Scholar 

  41. Margulies, E. H. et al. An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. Proc. Natl Acad. Sci. USA 102, 4795–4800 (2005).

    Article  ADS  CAS  Google Scholar 

  42. Margulies, E. H. et al. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. Genome Res. 17, 760–774 (2007).

    Article  CAS  Google Scholar 

  43. Brudno, M. et al. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731 (2003).

    Article  CAS  Google Scholar 

  44. Cooper, G. M. et al. Characterization of evolutionary rates and constraints in three mammalian genomes. Genome Res. 14, 539–548 (2004).

    Article  CAS  Google Scholar 

  45. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  46. Kiemeney, L. A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nature Genet. 40, 1307–1312 (2008).

    Article  CAS  Google Scholar 

  47. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  48. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by the National Human Genome Research Institute (grants U54 HG004557 and U01 HG004271). I thank P. Kapranov for discussions and long-term collaboration, H. Sussman for helpful discussions and editing of the manuscript, and A. Dobin for help deriving the computational expressions to determine the co-linear and non-co-linear permutations, and for the plot shown in Fig. 4c.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

T.R.G. was an employee of Affymetrix at the same time as some of the studies cited in this Review used its microarray technology.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to T.R.G. (gingeras@cshl.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gingeras, T. Implications of chimaeric non-co-linear transcripts. Nature 461, 206–211 (2009). https://doi.org/10.1038/nature08452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing