Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chd1 regulates open chromatin and pluripotency of embryonic stem cells

Abstract

An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chd1 RNAi ES cells have decreased self-renewal but maintain expression of markers of the undifferentiated state.
Figure 2: Chd1 is required for ES cell pluripotency.
Figure 3: Chd1 associates with euchromatic promoter regions in ES cells.
Figure 4: Chd1 is required to maintain open chromatin in ES cells.
Figure 5: Chd1 is required for efficient induction of pluripotency.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Expression and ChIP-chip microarray data are deposited in the Gene Expression Omnibus (GEO) under accession number GSE16462.

References

  1. Mikkelsen, T. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Reddien, P. W. & Sanchez-Alvarado, A. Fundamentals of planarian regenaration. Annu. Rev. Cell Dev. Biol. 20, 725–757 (2004)

    Article  CAS  Google Scholar 

  3. Terstappen, L. W. et al. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77, 1218–1227 (1991)

    CAS  PubMed  Google Scholar 

  4. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988)

    Article  ADS  CAS  Google Scholar 

  5. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006)

    Article  CAS  Google Scholar 

  6. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008)

    Article  CAS  Google Scholar 

  7. Grskovic, M. et al. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells. PLoS Genet. 3, e145 (2007)

    Article  Google Scholar 

  8. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA 101, 10380–10385 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Woodage, T. et al. Characterization of the CHD family of proteins. Proc. Natl Acad. Sci. USA 94, 11472–11477 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Sims, R. J. et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005)

    Article  CAS  Google Scholar 

  11. Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003)

    Article  CAS  Google Scholar 

  12. Stokes, D. G., Tartof, K. D. & Perry, R. P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA 93, 7137–7142 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Sims, R. J. et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007)

    Article  CAS  Google Scholar 

  14. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    Article  CAS  Google Scholar 

  15. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000)

    Article  CAS  Google Scholar 

  16. Morrisey, E. E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579–3590 (1998)

    Article  CAS  Google Scholar 

  17. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    Article  CAS  Google Scholar 

  18. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002)

    Article  CAS  Google Scholar 

  19. Loh, Y.-H. et al. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21, 2545–2557 (2007)

    Article  CAS  Google Scholar 

  20. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  21. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007)

    Article  CAS  Google Scholar 

  23. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007)

    Article  CAS  Google Scholar 

  25. Skottman, H. et al. Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23, 1343–1456 (2005)

    Article  CAS  Google Scholar 

  26. Ramalho-Santos, M. et al. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Kimura, A., Umehara, T. & Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nature Genet. 32, 370–377 (2002)

    Article  Google Scholar 

  28. Venkatasubrahmanyam, S. et al. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc. Natl Acad. Sci. USA 104, 16609–16614 (2007)

    Article  ADS  CAS  Google Scholar 

  29. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 6, 1525–1530 (2004)

    Article  ADS  Google Scholar 

  30. Konev, A. Y. et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo . Science 317, 1087–1090 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009)

    Article  CAS  Google Scholar 

  32. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004)

    Article  CAS  Google Scholar 

  34. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Doniger, S. W. et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4, R7 (2003)

    Article  Google Scholar 

  37. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36 (2002)

    Article  Google Scholar 

  38. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006)

    Article  ADS  CAS  Google Scholar 

  39. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnol. 26, 916–924 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Smith for Oct4-GiP ES cells, M. S. Parmacek for Gata6-/- ES cells, R. P. Perry and D. G. Stokes for the Chd1 antibody, M. Bigos and V. Stepps at the Flow Cytometry Core Facility and L. Ta and C. Barker at the Genomics Core Facility of the Gladstone Institutes for expert assistance, C. Chiu for technical assistance, members of the Santos laboratory, in particular M. Grskovic for advice, and A. Kriegstein, D. Melton, A. Alvarez-Buylla, D. Stainier, R. Blelloch, B. Panning, J. Reiter and M. Grskovic for discussions and critical reading of the manuscript. A.G.-M. was the recipient of a predoctoral fellowship from the Foundation for Science and Technology (POCI2010/FSE), Portugal. R.S. was the recipient of a CIRM postdoctoral training grant. This work was supported by grants from the Sandler Family to M.T.M., CIRM Young Investigator Award and NIH Director’s New Innovator Award to K.P., Israel Science Foundation (ISF 215/07), European Union (IRG-206872) and Alon Fellowship to E.M., and NIH Director’s New Innovator Award, California Institute for Regenerative Medicine and Juvenile Diabetes Research Foundation to M.R.-S.

Author Contributions A.G.-M., J.R.-S., M.T.M., K.P., E.M. and M.R.-S. planned the project; A.G.-M., A.A., F.P., R.S., M.J.M. and A.H. performed the experiments; A.G.-M., A.A., F.P., R.S., M.J.M., K.P., E.M. and M.R.-S. analysed the data; and A.G.-M., K.P., E.M. and M.R.-S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ramalho-Santos.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-14 plus Legends. (PDF 6338 kb)

Supplementary Data

This file contains Supplementary Data 1: Normalized expression microarray data of control and Chd1 RNAi ES cells. (XLS 10540 kb)

Supplementary Data

This file contains Supplementary Data 2: Chd1 target genes in ES cells as determined by ChIP-chip. (XLS 432 kb)

Supplementary Table

This file contains Supplementary Table 1: Sequences of the short-hairpin RNAs used in the RNAi screen. (XLS 19 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspar-Maia, A., Alajem, A., Polesso, F. et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863–868 (2009). https://doi.org/10.1038/nature08212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08212

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing