Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contamination of the asteroid belt by primordial trans-Neptunian objects

Abstract

The main asteroid belt, which inhabits a relatively narrow annulus 2.1–3.3 au from the Sun, contains a surprising diversity of objects ranging from primitive ice–rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in situ from a primordial disk that experienced radical chemical changes within this zone1. Here we show that the violent dynamical evolution of the giant-planet orbits required by the so-called Nice model2,3,4 leads to the insertion of primitive trans-Neptunian objects into the outer belt. This result implies that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. The dark captured bodies, composed of organic-rich materials, would have been more susceptible to collisional evolution than typical main-belt asteroids. Their weak nature makes them a prodigious source of micrometeorites—sufficient to explain why most are primitive in composition and are isotopically different from most macroscopic meteorites5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The orbital element distributions of real and modelled asteroids.
Figure 2: The beginning and end states of the SFDs in the three regions studied.

Similar content being viewed by others

References

  1. Bell, J. F., Davis, D. R., Hartmann, W. K. & Gaffey, M. J. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 921–945 (Univ. Arizona Press, 1989)

    Google Scholar 

  2. Tsiganis, K., Gomes, R. S., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    Article  CAS  ADS  Google Scholar 

  4. Gomes, R. S., Levison, H. F., Morbidelli, A. & Tsiganis, K. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  CAS  ADS  Google Scholar 

  5. Matrajt, G. et al. Oxygen isotope measurements of individual unmelted Antarctic micrometeorites. Geochim. Cosmochim. Acta 70, 4007–4018 (2006)

    Article  CAS  ADS  Google Scholar 

  6. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    Article  CAS  ADS  Google Scholar 

  7. Nesvorný, D. & Vokrouhlický, D. Chaotic capture of Neptune Trojans. Astron. J. 137, 5003–5011 (2009)

    Article  ADS  Google Scholar 

  8. Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R. & Tsiganis, K. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008)

    Article  ADS  Google Scholar 

  9. Nesvorný, D., Vokrouhlický, D. & Morbidelli, A. Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962–1976 (2007)

    Article  ADS  Google Scholar 

  10. Licandro, J., de León, J., Pinilla, N. & Serra-Ricart, M. Multi-wavelength spectral study of asteroids in cometary orbits. Adv. Space Res. 38, 1991–1994 (2006)

    Article  ADS  Google Scholar 

  11. Tholen, D. J. & Barucci, M. A. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 298–315 (Univ. Arizona Press, 1989)

    Google Scholar 

  12. Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A feature-based taxonomy. Icarus 158, 146–177 (2002)

    Article  ADS  Google Scholar 

  13. Bottke, W. F. et al. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005)

    Article  ADS  Google Scholar 

  14. Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005)

    Article  CAS  ADS  Google Scholar 

  15. Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus (submitted)

  16. Jewitt, D. C., Trujillo, C. A. & Luu, J. X. Population and size distribution of small Jovian Trojan asteroids. Astron. J. 120, 1140–1147 (2000)

    Article  ADS  Google Scholar 

  17. Yoshida, F. & Nakamura, T. Size distribution of faint Jovian L4 Trojan asteroids. Astron. J. 130, 2900–2911 (2005)

    Article  ADS  Google Scholar 

  18. Szabó, G. M., Ivezić, Ž., Jurić, M. & Lupton, R. The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3. Mon. Not. R. Astron. Soc. 377, 1393–1406 (2007)

    Article  ADS  Google Scholar 

  19. Leinhardt, Z. M. & Stewart, S. T. Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009)

    Article  ADS  Google Scholar 

  20. Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999)

    Article  ADS  Google Scholar 

  21. Mothé-Diniz, T., Carvano, J. M. & Lazzaro, D. Distribution of taxonomic classes in the main belt of asteroids. Icarus 162, 10–21 (2003)

    Article  ADS  Google Scholar 

  22. Carvano, J. M., Mothé-Diniz, T. & Lazzaro, D. Search for relations among a sample of 460 asteroids with featureless spectra. Icarus 161, 356–382 (2003)

    Article  ADS  Google Scholar 

  23. Burbine, T. H. et al. Oxygen and asteroids. Rev. Mineral. Geochem. 68, 273–343 (2008)

    Article  CAS  Google Scholar 

  24. Genge, M. J. Ordinary chondrite micrometeorites from the Koronis asteroids. Proc. Lunar Planet. Sci. Conf. 37, abstr. 1759 (2006)

    ADS  Google Scholar 

  25. Dermott, S. F., Durda, D. D., Grogan, K. & Kehoe, T. J. J. in Asteroids III (eds Bottke, W. F., Paolicchi, P., Binzel, R. P. & Cellino, A.) 423–442 (Univ. Arizona Press, 2002)

    Google Scholar 

  26. Morbidelli, A. & Gladman, B. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteorit. Planet. Sci. 33, 999–1016 (1998)

    Article  CAS  ADS  Google Scholar 

  27. Bottke, W. F., Rubincam, D. P. & Burns, J. A. Dynamical evolution of main belt meteoroids: numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus 145, 301–331 (2000)

    Article  ADS  Google Scholar 

  28. Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

    Article  CAS  ADS  Google Scholar 

  29. Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 653–655 (1993)

    Article  CAS  ADS  Google Scholar 

  30. Clark, B. E., Rivkin, A. S., Bus, S. J., Sanders, J. & X E, M, and P-type asteroid spectral observations. Bull. Am. Astron. Soc. 35, 955 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

H.F.L., W.F.B., A.M. and D.N. are grateful to NASA’s Origins of Solar Systems and Outer Planet Research programmes. D.N. is also grateful to the US National Science Foundation’s Astronomy & Astrophysics Grants programme for funding. M.G. wishes to thank Centre National de la Recherche Scientifique, Programme National de Planétologie and the European Community for funding. We thank S. Stewart and Z. Leinhardt for discussions and S. Weidenschilling and A. Harris, who acted as referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold F. Levison.

Supplementary information

Supplementary Information

This file contains Supplementary Notes (incorporating Figures 1-6 and Tables 1-2): (1) The Orbital Dynamics Calculations, (2) Collisional and Dynamical Depletion Evolution Model (CoDDEM) Calculations, (3) The Micrometeorite Origin Problem, (4) The Collisional Evolution of the Primordial Cometary Disk; and Supplementary References. (PDF 1644 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levison, H., Bottke, W., Gounelle, M. et al. Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009). https://doi.org/10.1038/nature08094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing