Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elite and stochastic models for induced pluripotent stem cell generation

Abstract

Induced pluripotent stem cells offer unprecedented potential for disease research, drug screening, toxicology and regenerative medicine. However, the process of reprogramming is inefficient and often incomplete. Here I consider reasons for bottlenecks in induced pluripotent stem cell generation, and propose a model in which most or all cells have the potential to become pluripotent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models explaining the low efficiency of iPS cell generation.
Figure 2: Stochastic model.

Similar content being viewed by others

References

  1. Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol. 23, 2699–2708 (2003)

    Article  CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)This paper is the first demonstration of direct reprogramming by defined factors.

    Article  CAS  Google Scholar 

  3. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature 448, 318–324 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germ-line competent induced pluripotent stem cells. Nature 448, 313–317 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007)

    Article  CAS  Google Scholar 

  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  Google Scholar 

  7. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Lowry, W. E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105, 2883–2888 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008)

    Article  Google Scholar 

  12. Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013 (2006)

    Article  CAS  Google Scholar 

  13. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol. 3, 778–784 (2001)

    Article  CAS  Google Scholar 

  14. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. 26, 101–106 (2008)

    Article  CAS  Google Scholar 

  15. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 . Nature Biotechnol. 26, 1269–1275 (2008)

    Article  CAS  Google Scholar 

  16. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic Beta cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008)

    Article  CAS  Google Scholar 

  18. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008)

    Article  CAS  Google Scholar 

  19. Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009)

    Article  CAS  Google Scholar 

  20. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnol. 26, 1276–1284 (2008)

    Article  CAS  Google Scholar 

  21. Varas, F. et al. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27, 300–306 (2008)

    Article  Google Scholar 

  22. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008)This paper is the first demonstration of integration-free iPS cell generation.

    Article  ADS  CAS  Google Scholar 

  23. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009)This paper is the first demonstration of iPS cell generation by protein transduction.

    Article  CAS  Google Scholar 

  25. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (Alen & Unwin, 1957)

    Google Scholar 

  27. Wernig, M., Meissner, A., Cassady, J. P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008)

    Article  CAS  Google Scholar 

  28. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000)

    Article  CAS  Google Scholar 

  29. Kopp, J. L., Ormsbee, B. D., Desler, M. & Rizzino, A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26, 903–911 (2008)

    Article  CAS  Google Scholar 

  30. Eminli, S., Utikal, J. S., Arnold, K., Jaenisch, R. & Hochedlinger, K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467–2474 (2008)

    Article  CAS  Google Scholar 

  31. Rowland, B. D. & Peeper, D. S. KLF4, p21 and context-dependent opposing forces in cancer. Nature Rev. Cancer 6, 11–23 (2006)

    Article  CAS  Google Scholar 

  32. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008)

    Article  CAS  Google Scholar 

  33. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008)

    Article  CAS  Google Scholar 

  34. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnol. 26, 916–924 (2008)

    Article  CAS  Google Scholar 

  35. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008)

    Article  CAS  Google Scholar 

  36. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Imamura, M. et al. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Dev. Biol. 6, 34 (2006)

    Article  Google Scholar 

  38. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006)

    Article  CAS  Google Scholar 

  39. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol. 26, 795–797 (2008)This paper presents considerable improvement of iPS cell generation by a defined chemical.

    Article  CAS  Google Scholar 

  40. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank B. Conklin and G. Howard for critical reading of the manuscript, and members of my laboratory for scientific and administrative support. I apologize to researchers whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yamanaka.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52 (2009). https://doi.org/10.1038/nature08180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08180

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing