Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased seasonality through the Eocene to Oligocene transition in northern high latitudes

Abstract

A profound global climate shift took place at the Eocene–Oligocene transition (33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions1,2,3. During this interval, changes in the Earth’s orbit and a long-term drop in atmospheric carbon dioxide concentrations4,5,6 resulted in both the growth of Antarctic ice sheets to approximately their modern size2,3 and the appearance of Northern Hemisphere glacial ice7,8. However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes9,10, others imply cooler temperatures11, increased seasonality12,13 and/or aridity12,13,14,15. Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian–Greenland Sea. Our data indicate a cooling of 5 °C in cold-month (winter) mean temperatures to 0–2 °C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the δ18O isotope shift across the Eocene–Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data from ODP site 913.
Figure 2: Data from ODP sites 985 and 643.
Figure 3: Data from ODP sites 913, 643 and 985, Norwegian–Greenland Sea.
Figure 4: Model surface temperature results (shown in °C) supporting bioclimatic estimates.

Similar content being viewed by others

References

  1. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  CAS  PubMed  Google Scholar 

  2. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    ADS  CAS  PubMed  Google Scholar 

  3. Lear, C. et al. Cooling and ice growth across the Eocene-Oligocene transition. Geology 36 (3) 251–354 210.1130/G1124 (2008)

    ADS  CAS  Google Scholar 

  4. Pagani, M. et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    ADS  CAS  PubMed  Google Scholar 

  5. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide over the past 60 million years. Nature 406, 695–699 (2000)

    ADS  CAS  PubMed  Google Scholar 

  6. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    ADS  CAS  PubMed  Google Scholar 

  7. Eldrett, J., Harding, I. C., Wilson, P., Butler, E. & Roberts, A. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007)

    ADS  CAS  PubMed  Google Scholar 

  8. Moran, K. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441, 601–605 (2006)

    ADS  CAS  PubMed  Google Scholar 

  9. Kohn, M. J. et al. Climate stability across the Eocene-Oligocene transition, southern Argentina. Geology 32, 621–624 (2004)

    ADS  Google Scholar 

  10. Grimes, S. T., Hooker, J. J., Collinson, M. E. & Mattey, D. P. Summer temperatures of late Eocene to early Oligocene freshwaters. Geology 33, 189–192 (2005)

    ADS  CAS  Google Scholar 

  11. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445, 639–642 (2007)

    CAS  PubMed  Google Scholar 

  12. Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000)

    ADS  CAS  PubMed  Google Scholar 

  13. Terry, D. O. Paleopedology of the Chadron Formation of northwestern Nebraska; implications for paleoclimatic change in the North American Midcontinent across the Eocene-Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168, 1–38 (2001)

    Google Scholar 

  14. Sheldon, N. D., Retallack, G. J. & Tanaka, S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol. 110, 687–696 (2002)

    ADS  CAS  Google Scholar 

  15. Dupont-Nivet, G. et al. Tibetan Plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007)

    CAS  PubMed  Google Scholar 

  16. Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle. Paleoceanography 19 PA4015 10.1029/2004PA001039 (2004)

    ADS  Google Scholar 

  17. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    ADS  CAS  PubMed  Google Scholar 

  18. St John, K. Cenozoic ice-rafting history of the Central Arctic Ocean: terrigenous sands on the Lomonosov ridge. Paleoceanography 23, PA1S05 (2008)

    Google Scholar 

  19. DeConto, R. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008)

    ADS  CAS  PubMed  Google Scholar 

  20. Kobashi, T., Grossman, E. L., Yancey, T. E. & Dockery, D. T. Reevaluation of conflicting Eocene tropical temperature estimates; molluskan oxygen isotope evidence for warm low latitudes. Geology 29, 983–986 (2001)

    ADS  CAS  Google Scholar 

  21. Retallack, G. J. et al. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geol. Soc. Am. Bull. 116, 817–839 (2004)

    ADS  Google Scholar 

  22. Thorn, V. C. & DeConto, R. M. Antarctic climate at the Eocene/Oligocene boundary; climate model sensitivity to high latitude vegetation type and comparisons with the palaeobotanical record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 134–157 (2006)

    Google Scholar 

  23. Eldrett, J. S., Harding, I. C., Firth, J. V. & Roberts, A. P. Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst biostratigraphy from the Norwegian-Greenland Sea. Mar. Geol. 204, 91–127 (2004)

    ADS  Google Scholar 

  24. Greenwood, D. R., Archibald, S. B., Mathewes, R. W. & Moss, P. T. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Can. J. Earth Sci. 42, 167–185 (2005)

    ADS  Google Scholar 

  25. Greenwood, D. R. & Wing, S. L. Eocene continental climates and latitudinal temperature-gradients. Geology 23, 1044–1048 (1995)

    ADS  Google Scholar 

  26. Norris, G. Spore-pollen evidence for early Oligocene high-latitude cool climatic episode in northern Canada. Nature 297, 387–389 (1982)

    ADS  Google Scholar 

  27. Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36 147–150 10.1130/G24332A.1 (2008)

    ADS  Google Scholar 

  28. Tripati, A. et al. Evidence for Northern Hemisphere glaciation back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett. 265, 112–122 (2008)

    ADS  CAS  Google Scholar 

  29. Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209 181–195 10.1016/S0012–821X(03)00067–0 (2003)

    ADS  CAS  Google Scholar 

  30. Edgar, K. M., Wilson, P. A., Sexton, P. F. & Suganuma, Y. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 448, 908–911 (2007)

    ADS  CAS  PubMed  Google Scholar 

  31. Bonow, J. M., Japsen, P., Lidmar-Bergstrom, K., Chalmers, J. A. & Pedersen, A. K. Cenozoic uplift of Nuussuaq and Disko, West Greenland—elevated erosion surfaces as uplift markers of a passive margin. Geomorphology 80, 325–337 (2006)

    ADS  Google Scholar 

  32. Brozena, J. M. et al. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: implications for basin development. Geology 31, 825–828 (2003)

    ADS  Google Scholar 

  33. Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006)

    ADS  Google Scholar 

  34. Utescher, T., Mosbrugger, V. & Ashraf, A. R. Terrestrial climate evolution in northwest Germany over the last 25 million years. Palaios 15, 430–449 (2000)

    ADS  Google Scholar 

  35. Greenwood, D. R., Archibald, S. B., Mathewes, R. W. & Moss, P. T. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Can. J. Earth Sci. 42, 167–185 (2005)

    ADS  Google Scholar 

  36. Thompson, R. S., Anderson, K. H. & Bartlein, P. J. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. US Geol. Surv. Prof. Pap. 1650, A & B (USGS, 1999)

    Google Scholar 

  37. Palaeoflora Database at 〈http://www.geologie.uni-bonn.de/Palaeoflora/Palaeoflora_home.htm〉.

  38. Natural Resources Canada at 〈http://planthardiness.gc.ca/ph_main.pl?lang=en〉.

  39. Integrated. Botanical Information System (IBIS). Australian National Herbarium at 〈http://www.anbg.gov.au/cgi-bin/anhsir〉.

  40. Collins, W. D. et al. The Community Climate System Model Version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006)

    ADS  Google Scholar 

  41. Collins, W. D. et al. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Clim. 19, 2144–2161 (2006b)

    ADS  Google Scholar 

  42. Yeager, S., Shields, C., Large, W. & Hack, J. J. The low resolution CCSM3. J. Clim. 19, 2545–2566 (2006)

    ADS  Google Scholar 

  43. Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005)

    ADS  Google Scholar 

  44. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009)

    ADS  CAS  PubMed  Google Scholar 

  45. Kiehl, J. T., Shields, C. A., Hack, J. J. & Collins, W. D. The climate sensitivity of the Community Climate System Model Version 3 (CCSM3). J. Clim. 19, 2584–2596 (2006)

    ADS  Google Scholar 

  46. Sewall, J. O., Sloan, L. C., Huber, M. & Wing, S. Climate sensitivity to changes in land surface characteristics. Glob. Planet. Change 26, 445–465 (2000)

    ADS  Google Scholar 

  47. Huber, M. & Sloan, L. C. Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene “greenhouse” climate. Geophys. Res. Lett. 28, 3481–3484 (2001)

    ADS  Google Scholar 

  48. Huber, M., Sloan, L. C. & Shellito, C. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) Geol. Soc. Am. Spec. Pap. 369, 25–47 (2003)

    Google Scholar 

  49. Yang, H. & Pierrehumbert, R. T. Production of dry air by isentropic mixing. J. Atmos. Sci. 51, 3437–3454 (1994)

    ADS  Google Scholar 

  50. Huber, M., McWilliams, J. C. & Ghil, M. A climatology of turbulent dispersion in the troposphere. J. Atmos. Sci. 58, 2377–2394 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This research used samples provided by the Ocean Drilling Program (ODP). ODP was sponsored by the US National Science Foundation (NSF) and participating countries under management of Consortium for Ocean Leadership. D.R.G.’s research is supported by NSERC (Canada). We thank S. Akbari for sample preparation.

Author Contributions J.S.E. and I.C.H. conceived the project, collected samples and data, and completed the palynological interpretation. D.R.G. and J.S.E. completed the bioclimatic analysis of the spore–pollen record, and led the write-up. M.H. conducted all numerical climate modelling and Lagrangian trajectory analysis. All authors were involved in developing the palaeoclimate interpretation in this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Eldrett.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Data, Supplementary References, Supplementary Figures S1-S9 and Supplementary Tables S1-S2. (PDF 5401 kb)

Supplementary Data

This file contains data for sites 913, 643 and 985. (XLS 234 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldrett, J., Greenwood, D., Harding, I. et al. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009). https://doi.org/10.1038/nature08069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing