Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PEP1 regulates perennial flowering in Arabis alpina

Abstract

Annual plants complete their life cycle in one year and initiate flowering only once, whereas perennials live for many years and flower repeatedly. How perennials undergo repeated cycles of vegetative growth and flowering that are synchronized to the changing seasons has not been extensively studied1. Flowering is best understood in annual Arabidopsis thaliana2,3, but many closely related species, such as Arabis alpina4,5, are perennials. We identified the A. alpina mutant perpetual flowering 1 (pep1), and showed that PEP1 contributes to three perennial traits. It limits the duration of flowering, facilitating a return to vegetative development, prevents some branches from undergoing the floral transition allowing polycarpic growth habit, and confers a flowering response to winter temperatures that restricts flowering to spring. Here we show that PEP1 is the orthologue of the A. thaliana gene FLOWERING LOCUS C (FLC). The FLC transcription factor inhibits flowering until A. thaliana is exposed to winter temperatures6,7, which trigger chromatin modifications that stably repress FLC transcription8,9,10,11. In contrast, PEP1 is only transiently repressed by low temperatures, causing repeated seasonal cycles of repression and activation of PEP1 transcription that allow it to carry out functions characteristic of the cyclical life history of perennials. The patterns of chromatin modifications at FLC and PEP1 differ correlating with their distinct expression patterns. Thus we describe a critical mechanism by which flowering regulation differs between related perennial and annual species, and propose that differences in chromatin regulation contribute to this variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arabis alpina is a polycarpic perennial that requires vernalization each year to flower.
Figure 2: PEP1 restricts the flowering phase and enhances polycarpy of A. alpina.
Figure 3: PEP1 is the Arabis alpina orthologue of A. thaliana FLC.
Figure 4: Repression of PEP1 expression by vernalization is unstable and correlated with changes in histone methylation.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The GenBank accession number for the PEP1 BAC sequence is FJ543377, and for the PEP1 cDNA sequence is FJ755930.

References

  1. Battey, N. H. & Tooke, F. Molecular control and variation in the floral transition. Curr. Opin. Plant Biol. 5, 62–68 (2002)

    Article  CAS  Google Scholar 

  2. Turck, F., Fornara, F. & Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008)

    Article  CAS  Google Scholar 

  3. Baurle, I. & Dean, C. The timing of developmental transitions in plants. Cell 125, 655–664 (2006)

    Article  CAS  Google Scholar 

  4. Ansell, S. W., Grundmann, M., Russell, S. J., Schneider, H. & Vogel, J. C. Genetic discontinuity, breeding-system change and population history of Arabis alpina in the Italian Peninsula and adjacent Alps. Mol. Ecol. 17, 2245–2257 (2008)

    Article  CAS  Google Scholar 

  5. Koch, M. A. et al. Three times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae). Mol. Ecol. 15, 825–839 (2006)

    Article  CAS  Google Scholar 

  6. Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999)

    Article  CAS  Google Scholar 

  7. Sheldon, C. C. et al. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458 (1999)

    Article  CAS  Google Scholar 

  8. Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Sung, S. & Amasino, R. M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Gendall, A. R., Levy, Y. Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis . Cell 107, 525–535 (2001)

    Article  CAS  Google Scholar 

  11. Finnegan, E. J. & Dennis, E. S. Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr. Biol. 17, 1978–1983 (2007)

    Article  CAS  Google Scholar 

  12. Battey, N. H. Aspects of seasonality. J. Exp. Bot. 51, 1769–1780 (2000)

    Article  CAS  Google Scholar 

  13. Bohlenius, H. et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312, 1040–1043 (2006)

    Article  ADS  Google Scholar 

  14. Foster, T., Johnston, R. & Seleznyova, A. A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann. Bot. (Lond.) 92, 199–206 (2003)

    Article  Google Scholar 

  15. Diomaiuto, J. Periodic flowering or continual flowering as a function of temperature in a perennial species: the Ravenelle wallflower (Cheiranthus cheiri L.). Phytomorphology 38, 163–171 (1988)

    Google Scholar 

  16. Hay, A. & Tsiantis, M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta . Nature Genet. 38, 942–947 (2006)

    Article  CAS  Google Scholar 

  17. Hanikenne, M. et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 . Nature 453, 391–395 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Schranz, M. E. et al. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa . Genetics 162, 1457–1468 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Aloia, M., Tocquin, P. & Perilleux, C. Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod. New Phytol. 178, 755–765 (2008)

    Article  Google Scholar 

  20. Schubert, D. et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 25, 4638–4649 (2006)

    Article  CAS  Google Scholar 

  21. Sung, S., Schmitz, R. J. & Amasino, R. M. A. PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis . Genes Dev. 20, 3244–3248 (2006)

    Article  CAS  Google Scholar 

  22. Greb, T. et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC . Curr. Biol. 17, 73–78 (2007)

    Article  CAS  Google Scholar 

  23. Shindo, C., Lister, C., Crevillen, P., Nordborg, M. & Dean, C. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev. 20, 3079–3083 (2006)

    Article  CAS  Google Scholar 

  24. Thomas, H., Thomas, H. M. & Ougham, H. Annuality, perenniality and cell death. J. Exp. Bot. 51, 1781–1788 (2000)

    Article  CAS  Google Scholar 

  25. Bena, G., Lejeune, B., Prosperi, J.-M. & Olivieri, I. Molecular phylogenetic approach for studying life-history evolution: the ambiguous example of the genus Medicago L. Proc. R. Soc. Lond. B 265, 1141–1151 (1998)

    Article  CAS  Google Scholar 

  26. Beilstein, M. A., Al-Shehbaz, I. A. & Kellogg, E. A. Brassicaceae phylogeny and trichome evolution. Am. J. Bot. 93, 607–619 (2006)

    Article  CAS  Google Scholar 

  27. Yan, L. et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007)

    Article  ADS  Google Scholar 

  29. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

  30. Searle, I. et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis . Genes Dev. 20, 898–912 (2006)

    Article  CAS  Google Scholar 

  31. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977)

    Article  ADS  CAS  Google Scholar 

  32. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998)

    Article  CAS  Google Scholar 

  33. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    Article  CAS  Google Scholar 

  34. Gordon, D., Abajian, C. & Green, P. Consed: A graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998)

    Article  CAS  Google Scholar 

  35. Lukashin, A. V. & Borodovsky, M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26, 1107–1115 (1998)

    Article  CAS  Google Scholar 

  36. Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000)

    Article  CAS  Google Scholar 

  37. Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inf. Softw. Technol. 47, 965–978 (2005)

    Article  Google Scholar 

  38. Lewis, S. E. et al. Apollo: a sequence annotation editor. Genome Biol. 3, research0082 (2002)

    Article  CAS  Google Scholar 

  39. Apweiler, R. et al. InterPro—an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16, 1145–1150 (2000)

    Article  CAS  Google Scholar 

  40. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    Article  CAS  Google Scholar 

  41. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank P. Sharma for growing plants and R. Bruggmann for running the gene prediction pipeline. The laboratories of H.S. and G.C. are partly funded by a core grant from the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Coupland or Maria C. Albani.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with Legends, Supplementary Tables 1-2 and Supplementary References. (PDF 5319 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Farrona, S., Vincent, C. et al. PEP1 regulates perennial flowering in Arabis alpina. Nature 459, 423–427 (2009). https://doi.org/10.1038/nature07988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07988

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing