Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans

Abstract

Innate social behaviours emerge from neuronal circuits that interpret sensory information on the basis of an individual’s own genotype, sex and experience. The regulated aggregation behaviour of the nematode Caenorhabditis elegans, a simple animal with only 302 neurons, is an attractive system to analyse these circuits. Wild social strains of C. elegans aggregate in the presence of specific sensory cues, but solitary strains do not1,2,3,4. Here we identify the RMG inter/motor neuron as the hub of a regulated circuit that controls aggregation and related behaviours. RMG is the central site of action of the neuropeptide receptor gene npr-1, which distinguishes solitary strains (high npr-1 activity) from wild social strains (low npr-1 activity); high RMG activity is essential for all aspects of social behaviour. Anatomical gap junctions connect RMG to several classes of sensory neurons known to promote aggregation, and to ASK sensory neurons, which are implicated in male attraction to hermaphrodite pheromones5. We find that ASK neurons respond directly to pheromones, and that high RMG activity enhances ASK responses in social strains, causing hermaphrodite attraction to pheromones at concentrations that repel solitary hermaphrodites. The coordination of social behaviours by RMG suggests an anatomical hub-and-spoke model for sensory integration in aggregation, and points to functions for related circuit motifs in the C. elegans wiring diagram.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective expression of NPR-1 suppresses aggregation and related behaviours in npr-1 mutants.
Figure 2: Inhibition of RMG by NPR-1 suppresses social behaviour.
Figure 3: ASK and ASJ sensory neurons promote aggregation.
Figure 4: Behavioural and neuronal responses to pheromones.

References

  1. Hodgkin, J. & Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans . Genetics 146, 149–164 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. de Bono, M. & Bargmann, C. I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans . Cell 94, 679–689 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. de Bono, M., Tobin, D. M., Davis, M. W., Avery, L. & Bargmann, C. I. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature 419, 899–903 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans . Nature 454, 1115–1118 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rogers, C. et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neurosci. 6, 1178–1185 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Hammock, E. A. & Young, L. J. Oxytocin, vasopressin and pair bonding: implications for autism. Phil. Trans. R. Soc. Lond. B 361, 2187–2198 (2006)

    Article  CAS  Google Scholar 

  8. Cheung, B. H., Cohen, M., Rogers, C., Albayram, O. & de Bono, M. Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr. Biol. 15, 905–917 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Davies, A. G., Bettinger, J. C., Thiele, T. R., Judy, M. E. & McIntire, S. L. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans . Neuron 42, 731–743 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Coates, J. C. & de Bono, M. Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans . Nature 419, 925–929 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Plummer, M. R., Rittenhouse, A., Kanevsky, M. & Hess, P. Neurotransmitter modulation of calcium channels in rat sympathetic neurons. J. Neurosci. 11, 2339–2348 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toth, P. T., Bindokas, V. P., Bleakman, D., Colmers, W. F. & Miller, R. J. Mechanism of presynaptic inhibition of neuropeptide Y at sympathetic nerve terminals. Nature 364, 635–639 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans . Cold Spring Harb. Symp. Quant. Biol. 55, 529–538 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. Schackwitz, W. S., Inoue, T. & Thomas, J. H. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans . Neuron 17, 719–728 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Komatsu, H., Mori, I., Rhee, J. S., Akaike, N. & Ohshima, Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans . Neuron 17, 707–718 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Chang, A. J., Chronis, N., Karow, D. S., Marletta, M. A. & Bargmann, C. I. A distributed chemosensory circuit for oxygen preference in C. elegans . PLoS Biol. 4, e274 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sieburth, D., Madison, J. M. & Kaplan, J. M. PKC-1 regulates secretion of neuropeptides. Nature Neurosci. 10, 49–57 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Okochi, Y., Kimura, K. D., Ohta, A. & Mori, I. Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J. 24, 2127–2137 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. White, J. Q. et al. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 17, 1847–1857 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans . Nature Chem. Biol. 3, 420–422 (2007)

    Article  CAS  Google Scholar 

  24. Butcher, R. A., Ragains, J. R., Kim, E. & Clardy, J. A potent dauer pheromone component in Caenorhabditis elegans acts synergistically with other components. Proc. Natl Acad. Sci. USA 105, 14288–14292 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001)

    Article  CAS  Google Scholar 

  26. Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans . Nature 450, 63–70 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454, 114–117 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ribelayga, C., Cao, Y. & Mangel, S. C. The circadian clock in the retina controls rod-cone coupling. Neuron 59, 790–801 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, B. L., Hall, D. H. & Chklovskii, D. B. Wiring optimization can relate neuronal structure and function. Proc. Natl Acad. Sci. USA 103, 4723–4728 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3, e2208 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Kim, K. & Li, C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans . J. Comp. Neurol. 475, 540–550 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Hart, A. C. et al. The Wormbook: Behavior <http://www.wormbook.org/chapters/www_behavior/behavior.html> (2006)

    Google Scholar 

  36. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans . Neuron 7, 729–742 (1991)

    Article  CAS  PubMed  Google Scholar 

  37. Hilliard, M. A., Bargmann, C. I. & Bazzicalupo, P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 12, 730–734 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. Bargmann, C. I. & Avery, L. Laser killing of cells in Caenorhabditis elegans . Methods Cell Biol. 48, 225–250 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilliard, M. A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellants. EMBO J. 24, 63–72 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Ward, A., Liu, J., Feng, Z. & Xu, X. Z. Light-sensitive neurons and channels mediate phototaxis in C. elegans . Nature Neurosci. 11, 916–922 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Looger for GCaMP2.2b, M. Nonet for cleavage-resistant synaptobrevin, and J. Ragains for synthesizing ascarosides. This work was funded by the Howard Hughes Medical Institute, the Harold and Leila Y Mathers Charitable Foundation, the Jensam Foundation, and National Institute of Health grants GM07739 (E.Z.M. and E.H.F.), CA24487 (J.C.) and GM077943 (R.A.B.). C.I.B. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions E.Z.M. performed experiments; N.P., E.H.F., S.C., R.A.B. and J.C. developed experimental methods and reagents; E.Z.M. and C.I.B. designed and interpreted experiments and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia I. Bargmann.

Supplementary information

Supplementary Information

This file contains Supplementary figures 1-4 with Legends, Supplementary Table 1, Supplementary Data and Supplementary References (PDF 1859 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macosko, E., Pokala, N., Feinberg, E. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009). https://doi.org/10.1038/nature07886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07886

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing