Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Petrological evidence for secular cooling in mantle plumes

Abstract

Geological mapping and geochronological studies have shown much lower eruption rates for ocean island basalts (OIBs) in comparison with those of lavas from large igneous provinces (LIPs) such as oceanic plateaux and continental flood provinces1. However, a quantitative petrological comparison has never been made between mantle source temperature and the extent of melting for OIB and LIP sources. Here we show that the MgO and FeO contents of Galapagos-related lavas and their primary magmas have decreased since the Cretaceous period. From petrological modelling2, we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1,560–1,620 °C in the Cretaceous to 1,500 °C at present. Iceland also exhibits secular cooling, in agreement with previous studies3,4. Our work provides quantitative petrological evidence that, in general, mantle plumes for LIPs with Palaeocene–Permian ages were hotter and melted more extensively than plumes of more modern ocean islands. We interpret this to reflect episodic flow from lower-mantle domains that are lithologically and geochemically heterogeneous.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compositions and inferred temperature–pressure conditions of melting for Galapagos-related magmatism.
Figure 2: Mantle potential temperatures inferred for lavas from some LIPs and ocean islands.
Figure 3: A generic model for interpreting the spatial localization of petrological variability.
Figure 4: Melt fractions inferred for lavas for some LIPs and ocean islands.

Similar content being viewed by others

References

  1. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Herzberg, C. & Asimow, P. D. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem. Geophys. Geosyst. 9 10.1029/2008GC002057 (2008)

  3. Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochem. Geophys. Geosyst. 8 10.1029GC001390 (2007)

    Article  Google Scholar 

  4. Armitage, J. J., Henstock, T. J., Minshull, T. A. & Hopper, J. R. Modelling the composition of melts formed during continental breakup of the Southeast Greenland margin. Earth Planet. Sci. Lett. 269, 248–258 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Duncan, R. A. & Hargraves, R. B. Plate tectonic evolution of the Caribbean region in the mantle reference frame. Bull. Geol. Soc. Am. 162, 81–93 (1984)

    Google Scholar 

  6. Hoernle, K., Hauff, F. & van den Bogaard, P. 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology 32, 697–700 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Storey, M., Mahoney, J. J., Kroenke, L. W. & Saunders, A. D. Are oceanic plateaus sites for komatiite formation? Geology 19, 376–379 (1991)

    Article  ADS  Google Scholar 

  8. Kerr, A. C. et al. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constrains. Lithos 37, 245–260 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Kerr, A. C. & Tarney, J. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology 33, 269–272 (2005)

    Article  ADS  Google Scholar 

  10. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton J. M.) 183–280 (Geophys. Monogr. Ser. 71, American Geophysical Union, 1992)

    Google Scholar 

  11. Herzberg, C. & O’Hara, M. J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43, 1857–1883 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Putirka, K. D. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochem. Geophys. Geosyst. 6 10.1029/2005GC000915 (2005)

    Article  Google Scholar 

  13. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988)

    Article  ADS  CAS  Google Scholar 

  14. Coltice, N., Phillips, B. R., Bertrand, H., Richard, Y. & Rey, P. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394 (2007)

    Article  ADS  Google Scholar 

  15. Anderson, D. L. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–393 (1982)

    Article  ADS  Google Scholar 

  16. McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Courtier, A. M. et al. Correlation of seismic and petrological thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett. 264, 308–316 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments on peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Hirano, N. et al. Volcanism in response to plate flexure. Science 313, 1426–1428 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Storey, M., Ducan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic igneous province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Holm, P. M. et al. The tertiary picrites of West Greenland: contributions from ‘Icelandic’ and other sources. Earth Planet. Sci. Lett. 115, 227–244 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. J.) 45–93 (Geophys. Monogr. Ser. 100, American Geophysical Union, 1997)

    Google Scholar 

  23. Slater, L., McKenzie, D., Grönvold, K. & Shimizu, N. Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol. 42, 321–354 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Sleep, N. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots. Geochem. Geophys. Geosyst. 9 10.1029/2008GC002090 (2008)

    Article  Google Scholar 

  25. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35 10.1029/2005GL035079 (2008)

  26. Farnetani, C. G. & Samuel, H. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32 10.1029/2005GL022360 (2005)

  27. Lin, S.-C. & van Keken, P. E. Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature 436, 250–252 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Trampert, J., Deschamps, F., Resovsky, J. & Yuen, D. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Herzberg, C. Geodynamic information in peridotite petrology. J. Petrol. 45, 2507–2530 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Forte, A. M. & Mitrovica, J. X. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1056 (2001)

    Article  ADS  CAS  Google Scholar 

  33. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Herzberg, C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–609 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Kushiro, I. in Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.) 109–122 (Geophys. Monogr. Ser. 95, American Geophysical Union, 1996)

    Google Scholar 

Download references

Acknowledgements

We are grateful to N. Sleep and A. Kerr for reviews, and to C. Class, M. Hirschmann, P. Asimow, M. Humayun and K. Hoernle for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Herzberg.

Supplementary information

Supplementary Information

This file contains Supplementary Notes to Supplementary Tables S1-S3, Supplementary Figures S1-S3 with Legends and Supplementary References. (PDF 915 kb)

Supplementary Table 1

Table 1 shows results for lavas from the Caribbean Large Igneous Province (CLIP), Gorgona, and the Galápagos hotspot and its associated Carnegie and Coco Ridges (see file s1 for notes relating to this table). (XLS 49 kb)

Supplementary Table 2

Table S2 shows results of primary magma compositions for various LIPS (see file s1 for notes relating to this table). (XLS 45 kb)

Supplementary Table 3

Table S3 shows results of primary magma solutions for various oceanic islands (see file s1 for notes relating to this table). (XLS 59 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzberg, C., Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009). https://doi.org/10.1038/nature07857

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07857

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing