Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond characterization of vibrational optical activity of chiral molecules

Abstract

Optical activity1,2,3 is the result of chiral molecules interacting differently with left versus right circularly polarized light. Because of this intrinsic link to molecular structure, the determination of optical activity through circular dichroism (CD) spectroscopy has long served as a routine method for obtaining structural information about chemical and biological systems in condensed phases4,5,6. A recent development is time-resolved CD spectroscopy, which can in principle map the structural changes associated with biomolecular function7 and thus lead to mechanistic insights into fundamental biological processes. But implementing time-resolved CD measurements is experimentally challenging because CD is a notoriously weak effect (a factor of 10-4–10-6 smaller than absorption). In fact, this problem has so far prevented time-resolved vibrational CD experiments. Here we show that vibrational CD spectroscopy with femtosecond time resolution can be realized when using heterodyned spectral interferometry to detect8,9,10 the phase and amplitude of the infrared optical activity free-induction-decay field in time (much like in a pulsed NMR experiment). We show that we can detect extremely weak signals in the presence of large achiral background contributions, by simultaneously measuring with a femtosecond laser pulse the vibrational CD and optical rotatory dispersion spectra of dissolved chiral limonene molecules. We have so far only targeted molecules in equilibrium, but it would be straightforward to extend the method for the observation of ultrafast structural changes such as those occurring during protein folding or asymmetric chemical reactions. That is, we should now be in a position to produce ‘molecular motion pictures’11 of fundamental molecular processes from a chiral perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterodyned detection of optical activity free induction decay.
Figure 2: Vibrational optical activity signals of chiral limonenes.

Similar content being viewed by others

References

  1. Rosenfeld, L. Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen. Z. Phys. 52, 161–174 (1928)

    Article  ADS  CAS  Google Scholar 

  2. Gillard, R. D. Hand in hand. Nature 347, 594 (1990)

    Article  ADS  Google Scholar 

  3. Nakanishi, K., Berova, N. & Woody, R. W. Circular Dichroism: Principles and Applications (Wiley-VCH, 2000)

    Google Scholar 

  4. Tinoco, I., Mickols, W., Maestre, M. F. & Bustamante, C. Absorption, scattering, and imaging of biomolecular structures with polarized light. Annu. Rev. Biophys. Biophys. Chem. 16, 319–349 (1987)

    Article  CAS  Google Scholar 

  5. Chin, D.-H., Woody, R. W., Rohl, C. A. & Baldwin, R. L. Circular dichroism spectra of short, fixed-nucleus alanine helices. Proc. Natl Acad. Sci. USA 99, 15416–15421 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Clarke, D. T., Doig, A. J., Stapley, B. J. & Jones, G. R. The α-helix folds on the millisecond time scale. Proc. Natl Acad. Sci. USA 96, 7232–7237 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Goldbeck, R. A., Kim-Shapiro, D. B. & Kliger, D. S. Fast natural and magnetic circular dichroism spectroscopy. Annu. Rev. Phys. Chem. 48, 453–479 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Zanni, M. T., Ge, N.-H., Kim, Y. S. & Hochstrasser, R. M. Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the cross peaks needed for structure determination. Proc. Natl Acad. Sci. USA 98, 11265–11270 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Cho, M. Spectroscopy: Molecular motion pictures. Nature 444, 431–432 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Keiderling, T. A. Vibrational CD of biopolymers. Nature 322, 851–852 (1986)

    Article  ADS  Google Scholar 

  13. Silva, R. A. G. D., Kubelka, J., Bour, P., Decatur, S. M. & Keiderling, T. A. Site-specific conformational determination in thermal unfolding studies of helical peptides using vibrational circular dichroism with isotopic substitution. Proc. Natl Acad. Sci. USA 97, 8318–8323 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Lewis, J. W. et al. New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin. J. Phys. Chem. 89, 289–294 (1985)

    Article  CAS  Google Scholar 

  15. Xie, X. & Simon, J. D. Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of carbon monoxide. J. Am. Chem. Soc. 112, 7802–7803 (1990)

    Article  CAS  Google Scholar 

  16. Niezborala, C. & Hache, F. Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator. J. Opt. Soc. Am. B 23, 2418–2424 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Choi, J. H. & Cho, M. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis. J. Chem. Phys. 120, 4383–4392 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Rhee, H., Ha, J.-H., Jeon, S.-J. & Cho, M. Femtosecond spectral interferometry of optical activity: Theory. J. Chem. Phys. 129, 135102 (2008)

    Article  Google Scholar 

  19. Walecki, W. J., Fittinghoff, D. N., Smirl, A. L. & Trebino, R. Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry. Opt. Lett. 22, 81–83 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Gallagher, S. M. et al. Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals. J. Opt. Soc. Am. B 15, 2338–2345 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Brixner, T., Stiopkin, I. V. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Bridges, T. J. & Klüver, J. W. Dichroic calcite polarizers for the infrared. Appl. Opt. 4, 1121–1125 (1965)

    Article  ADS  CAS  Google Scholar 

  24. Guo, C. et al. Fourier transform vibrational circular dichroism from 800 to 10,000 cm-1: near-IR-VCD spectral standards for terpenes and related molecules. Vib. Spectrosc. 42, 254–272 (2006)

    Article  CAS  Google Scholar 

  25. Schrader, V. B. & Korte, E. H. Infrarot-Rotationsdispersion (IRD). Angew. Chem. 84, 218–219 (1972)

    Article  Google Scholar 

  26. Chirgadze, Yu. N., Venyaminov, S. Yu. & Lobachev, V. M. Optical rotatory dispersion of polypeptides in the near-infrared region. Biopolymers 10, 809–820 (1971)

    Article  CAS  Google Scholar 

  27. Choi, J.-H., Hahn, S. & Cho, M. Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: Constrained MD simulation studies. Biopolymers 83, 519–536 (2006)

    Article  CAS  Google Scholar 

  28. Choi, J.-H., Cheon, S., Lee, H. & Cho, M. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system. Phys. Chem. Chem. Phys. 10, 3839–3856 (2008)

    Article  CAS  Google Scholar 

  29. Cho, M. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108, 1331–1418 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Creative Research Initiatives (CMDS) of MEST/KOSEF (M.C.) and the Frontier Research Laboratory Program of KBSI (S.-J.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhaeng Cho.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Methods, Supplementary References, Supplementary Tables S1-S3 and Supplementary Figures S1-S12 with Legends (PDF 864 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, H., June, YG., Lee, JS. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310–313 (2009). https://doi.org/10.1038/nature07846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07846

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing