Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ChIP-seq accurately predicts tissue-specific activity of enhancers

Abstract

A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue dissection boundaries, overview of the ChIP-seq approach and summary of p300 results.
Figure 2: p300 binding accurately predicts enhancers and their tissue-specific activity patterns.
Figure 3: Examples of successful prediction of in vivo enhancers by p300 binding in embryonic tissues.
Figure 4: In all tissues examined, p300 is enriched at highly conserved non-coding regions.
Figure 5: p300 peaks are enriched near genes that are expressed in the same tissue.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

All ChIP-seq data sets described in this study have been deposited at the National Center for Biotechnology Information (NCBI) in the Gene Expression Omnibus (GEO) database under accession number GSE13845.

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001)

    ADS  CAS  PubMed  Google Scholar 

  2. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    ADS  CAS  PubMed  Google Scholar 

  3. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    CAS  PubMed  Google Scholar 

  4. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002)

    ADS  PubMed  Google Scholar 

  5. Marshall, H. et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1 . Nature 370, 567–571 (1994)

    ADS  CAS  PubMed  Google Scholar 

  6. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003)

    CAS  PubMed  Google Scholar 

  7. de la Calle-Mustienes, E. et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15, 1061–1072 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005)

    PubMed  Google Scholar 

  9. Prabhakar, S. et al. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res. 16, 855–863 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006)

    ADS  CAS  PubMed  Google Scholar 

  11. Visel, A. et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nature Genet. 40, 158–160 (2008)

    CAS  PubMed  Google Scholar 

  12. Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100–1111 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

  14. Margulies, E. H. et al. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. Genome Res. 17, 760–774 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooper, G. M. & Brown, C. D. Qualifying the relationship between sequence conservation and molecular function. Genome Res. 18, 201–205 (2008)

    CAS  PubMed  Google Scholar 

  16. McGaughey, D. M. et al. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res. 18, 252–260 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007)

    CAS  PubMed  Google Scholar 

  18. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson, A. G. et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 18, 1906–1917 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wederell, E. D. et al. Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res. 36, 4549–4564 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature Methods 5, 829–834 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eckner, R. et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994)

    CAS  PubMed  Google Scholar 

  24. Eckner, R., Yao, T. P., Oldread, E. & Livingston, D. M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10, 2478–2490 (1996)

    CAS  PubMed  Google Scholar 

  25. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998)

    CAS  PubMed  Google Scholar 

  26. Merika, M., Williams, A. J., Chen, G., Collins, T. & Thanos, D. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell 1, 277–287 (1998)

    CAS  PubMed  Google Scholar 

  27. Maston, G. A., Evans, S. K. & Green, M. R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006)

    CAS  PubMed  Google Scholar 

  28. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007)

    CAS  PubMed  Google Scholar 

  29. Xi, H. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136 (2007)

    PubMed  PubMed Central  Google Scholar 

  30. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)

  31. Kothary, R. et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature 335, 435–437 (1988)

    ADS  CAS  PubMed  Google Scholar 

  32. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007)

    CAS  PubMed  Google Scholar 

  33. Cheng, Y. et al. Transcriptional enhancement by GATA1-occupied DNA segments is strongly associated with evolutionary constraint on the binding site motif. Genome Res. 18, 1896–1905 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006)

    CAS  PubMed  Google Scholar 

  36. Pennacchio, L. A., Loots, G. G., Nobrega, M. A. & Ovcharenko, I. Predicting tissue-specific enhancers in the human genome. Genome Res. 17, 201–211 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schones, D. E. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008)

    CAS  PubMed  Google Scholar 

  40. Barrera, L. O. et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res. 18, 46–59 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    CAS  PubMed  Google Scholar 

  42. Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994)

    ADS  CAS  PubMed  Google Scholar 

  43. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996)

    CAS  PubMed  Google Scholar 

  44. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000)

    CAS  PubMed  Google Scholar 

  45. Ge, K. et al. Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis. Nature 417, 563–567 (2002)

    ADS  CAS  PubMed  Google Scholar 

  46. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blow, M. J. et al. Identification of the source of ancient remains through genomic sequencing. Genome Res. 18, 1347–1353 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Krawchuk, D. & Kania, A. Identification of genes controlled by LMX1B in the developing mouse limb bud. Dev. Dyn. 237, 1183–1192 (2008)

    CAS  PubMed  Google Scholar 

  50. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008)

    CAS  PubMed  Google Scholar 

  51. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007)

    CAS  PubMed  Google Scholar 

  52. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mikkelsen, T. S. et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177 (2007)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Hosseini and S. Phouanenavong for technical support, and J. Rubenstein, J. Long, J. Choi and Y. Zhu for help with microarray experiments. This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. L.A.P. and E.M.R. were supported by the Berkeley-PGA, under the Programs for Genomic Applications, funded by National Heart, Lung, & Blood Institute, and L.A.P. by the National Human Genome Research Institute. A.V. was supported by an American Heart Association postdoctoral fellowship. B.R. was supported by grants from the National Human Genome Research Institute and the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len A. Pennacchio.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with Legends and Supplementary Tables 1, 6 and 7. (PDF 1271 kb)

Supplementary Tables

This file contains Supplementary Tables 2-4 which show p300 peaks in forebrain, midbrain, and limb (XLS 472 kb)

Supplementary Tables

This file contains Supplementary Table 5 which shows results of in vivo enhancer assays in transgenic mice (XLS 85 kb)

Supplementary Tables

This file contains Supplementary Tables 8-11 which show forebrain and limb over- and underexpressed genes (XLS 772 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visel, A., Blow, M., Li, Z. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009). https://doi.org/10.1038/nature07730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07730

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing