Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-Q surface-plasmon-polariton whispering-gallery microcavity

Abstract

Surface plasmon polaritons (SPPs) are electron density waves excited at the interfaces between metals and dielectric materials1. Owing to their highly localized electromagnetic fields, they may be used for the transport and manipulation of photons on subwavelength scales2,3,4,5,6,7,8,9. In particular, plasmonic resonant cavities represent an application that could exploit this field compression to create ultrasmall-mode-volume devices. A key figure of merit in this regard is the ratio of cavity quality factor, Q (related to the dissipation rate of photons confined to the cavity), to cavity mode volume, V (refs 10, 11). However, plasmonic cavity Q factors have so far been limited to values less than 100 both for visible and near-infrared wavelengths12,13,14,15,16. Significantly, such values are far below the theoretically achievable Q factors for plasmonic resonant structures. Here we demonstrate a high-Q SPP whispering-gallery microcavity that is made by coating the surface of a high-Q silica microresonator with a thin layer of a noble metal. Using this structure, Q factors of 1,376 ± 65 can be achieved in the near infrared for surface-plasmonic whispering-gallery modes at room temperature. This nearly ideal value, which is close to the theoretical metal-loss-limited Q factor, is attributed to the suppression and minimization of radiation and scattering losses that are made possible by the geometrical structure and the fabrication method. The SPP eigenmodes, as well as the dielectric eigenmodes, are confined within the whispering-gallery microcavity and accessed evanescently using a single strand of low-loss, tapered optical waveguide17,18. This coupling scheme provides a convenient way of selectively exciting and probing confined SPP eigenmodes. Up to 49.7 per cent of input power is coupled by phase-matching control between the microcavity SPP and the tapered fibre eigenmodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tapered fibre waveguide and SPP whispering-gallery microdisk resonator.
Figure 2: Cavity mode dispersion, effective mode index and Q factor.
Figure 3: Q -factor measurements for silver-coated and chromium-coated microdisk resonators.
Figure 4: Transmission spectrum versus waveguide coupling gap.

Similar content being viewed by others

References

  1. Raether, H. R. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988)

    Book  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  5. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

    Article  ADS  Google Scholar 

  7. Lopez-Tejeira, F. et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nature Phys. 3, 324–328 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Brongersma, M. L. & Kik, P. G. Surface Plasmon Nanophotonics (Springer, 2007)

    Book  Google Scholar 

  10. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)

    Article  ADS  Google Scholar 

  13. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006)

    Article  ADS  Google Scholar 

  15. Weeber, J.-C., Bouhelier, A., Colas des Francs, G., Markey, L. & Dereux, A. Submicrometer in-plane integrated surface plasmon cavities. Nano Lett. 7, 1352–1359 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Vesseur, E. J. R. et al. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett. 92, 083110 (2008)

    Article  ADS  Google Scholar 

  17. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802(R) (2006)

    Article  ADS  Google Scholar 

  20. Borselli, M., Johnson, T. J. & Painter, O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express 13, 1515–1530 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–929 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Spillane, S. et al. Ultra-high-Q toroidal microcavities for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  23. Oxborrow, M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007)

    Article  ADS  Google Scholar 

  24. Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  CAS  Google Scholar 

  25. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985)

    Google Scholar 

  26. Rowland, D. R. & Love, J. D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc. J. Optoelectron. 140, 177–188 (1993)

    Article  Google Scholar 

  27. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Gong, Y. Y. & Vučković, J. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett. 90, 033113 (2007)

    Article  ADS  Google Scholar 

  30. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. F. Oulton and G. Bartal for discussions and S. Zhang for a critical reading of the manuscript. This work was supported by the US Air Force Office of Scientific Research MURI program (grant no. FA9550-04-1-0434) and by the NSF Nanoscale Science and Engineering Center under award no. DMI-0327077.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Zhang or Kerry Vahala.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion and Notes, Supplementary Figures S1-S5 with Legends and Supplementary References (PDF 735 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, B., Ostby, E., Sorger, V. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009). https://doi.org/10.1038/nature07627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07627

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing