Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cold streams in early massive hot haloes as the main mode of galaxy formation

Abstract

Massive galaxies in the young Universe, ten billion years ago, formed stars at surprising intensities1,2. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids1,2,3,4,5. Cosmological simulations6 and clustering theory6,7 are used to explore how these galaxies acquired their gas. Here we report that they are ‘stream-fed galaxies’, formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes8,9. A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duty cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely2,12,13 are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid4,10,11. This stream-driven scenario for the formation of discs and spheroids is an alternative to the merger picture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Entropy, velocity and inward flux of cold streams penetrating hot haloes.
Figure 2: Streams in three dimensions.
Figure 3: Accretion profiles, (r).
Figure 4: Abundance of galaxies as a function of gas inflow rate, n( ).

Similar content being viewed by others

References

  1. Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Chapman, S. C., Smail, I., Blain, A. W. & Ivison, R. J. A population of hot, dusty ultraluminous galaxies at z 2. Astrophys. J. 614, 671–678 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Förster Schreiber, N. M. et al. SINFONI integral field spectroscopy of z 2 UV-selected galaxies: Rotation curves and dynamical evolution. Astrophys. J. 645, 1062–1075 (2006)

    Article  ADS  Google Scholar 

  4. Genzel, R. et al. From rings to bulges: evidence for rapid secular galaxy evolution at z 2 from integral field spectroscopy in the SINS survey. Astrophys. J. 687, 59–77 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Stark, D. P. et al. The formation and assembly of a typical star-forming galaxy at z ≈ 3. Nature 455, 775–777 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Neistein, E., van den Bosch, F. C. & Dekel, A. Natural downsizing in hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 372, 933–948 (2006)

    Article  ADS  Google Scholar 

  7. Neistein, E. & Dekel, A. Merger rates of dark-matter haloes. Mon. Not. R. Astron. Soc. 388, 1792–1802 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 2–20 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)

    Article  ADS  Google Scholar 

  10. Noguchi, M. Early evolution of disk galaxies: Formation of bulges in clumpy young galactic disks. Astrophys. J. 514, 77–95 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Elmegreen, B., Bournaud, F. & Elmegreen, D. M. Bulge formation by the coalescence of giant clumps in primordial disk galaxies. Astrophys. J. 688, 67–77 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Wall, J. V., Pope, A. & Scott, D. The evolution of submillimetre galaxies: two populations and a redshift cut-off. Mon. Not. R. Astron. Soc. 383, 435–444 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Tacconi, L. J. et al. Submillimeter galaxies at z 2: Evidence for major mergers and constraints on lifetimes, IMF, and CO-H2 conversion factor. Astrophys. J. 680, 246–262 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Adelberger, K. L. et al. Optical selection of star-forming galaxies at redshifts 1 < z 3. Astrophys. J. 607, 226–240 (2004)

    Article  ADS  Google Scholar 

  15. Daddi, E. et al. A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 < z 2.5. Astrophys. J. 617, 746–764 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Neistein, E. & Dekel, A. Constructing merger trees that mimic N-body simulations. Mon. Not. R. Astron. Soc. 383, 615–626 (2008)

    Article  ADS  Google Scholar 

  17. Genel, S. et al. Mergers and mass accretion rates in galaxy assembly: The millennium simulation compared to observations of z 2 galaxies. Astrophys. J. 688, 789–793 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Birnboim, Y. & Dekel, A. Virial shocks in galactic haloes? Mon. Not. R. Astron. Soc. 345, 349–364 (2003)

    Article  ADS  Google Scholar 

  19. Binney, J. On the origin of the galaxy luminosity function. Mon. Not. R. Astron. Soc. 347, 1093–1096 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Ocvirk, P., Pichon, C. & Teyssier, R. Bimodal gas accretion in the MareNostrum galaxy formation simulation. Mon. Not. R. Astron. Soc. 390, 1326–1338 (2008)

    ADS  CAS  Google Scholar 

  21. Keres, D. et al. Galaxies in a simulated ΛCDM Universe I: cold mode and hot cores. Preprint at 〈http://arxiv.org/abs/0809.1430〉 (2008)

  22. Birnboim, Y., Dekel, A. & Neistein, E. Bursting and quenching in massive galaxies without major mergers or AGNs. Mon. Not. R. Astron. Soc. 380, 339–352 (2007)

    Article  ADS  Google Scholar 

  23. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–75 (2002)

    Article  ADS  Google Scholar 

  24. Kriek, M. et al. Spectroscopic identification of massive galaxies at z 2.3 with strongly suppressed star formation. Astrophys. J. 649, L71–L74 (2006)

    Article  ADS  CAS  Google Scholar 

  25. van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z 2.3: Early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. 677, L5–L8 (2008)

    Article  ADS  Google Scholar 

  26. Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R. & Dekel, A. The effect of galaxy mass ratio on merger-driven starbursts. Mon. Not. R. Astron. Soc. 384, 386–409 (2008)

    Article  ADS  Google Scholar 

  27. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986)

    Article  ADS  CAS  Google Scholar 

  28. Dekel, A. & Woo, J. Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies. Mon. Not. R. Astron. Soc. 344, 1131–1144 (2003)

    Article  ADS  Google Scholar 

  29. Dekel, A. & Birnboim, Y. Gravitational quenching in massive galaxies and clusters by clumpy accretion. Mon. Not. R. Astron. Soc. 383, 119–138 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Elmegreen, D. M., Elmegreen, B. G. & Hirst, A. C. Discovery of face-on counterparts of chain galaxies in the Tadpole Advanced Camera for Surveys Field. Astrophys. J. 604, L21–L23 (2004)

    Article  ADS  Google Scholar 

  31. Robertson, B. E. & Bullock, J. S. High-redshift galaxy kinematics: Constraints on models of disk formation. Astrophys. J. 685, L27–L30 (2004)

    Article  ADS  Google Scholar 

  32. Finlator, K., Davé, R., Papovich, C. & Hernquist, L. The physical and photometric properties of high-redshift galaxies in cosmological hydrodynamic simulations. Astrophys. J. 639, 672–694 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Nagamine, K., Ouchi, M., Springel, V. & Hernquist, L. Lyman-alpha emitters and Lyman-break galaxies at z = 3–6 in cosmological SPH simulations. Preprint at 〈http://arxiv.org/abs/0802.0228〉 (2008)

Download references

Acknowledgements

We acknowledge discussions with N. Bouche, S. M. Faber, R. Genzel, D. Koo, A. Kravtsov, A. Pope, J. R. Primack, J. Prochaska, A. Sternberg and J. Wall. This research was supported by the France–Israel Teamwork in Sciences, the German–Israel Science Foundation, the Israel Science Foundation, a NASA Theory Program at UCSC, and a Minerva fellowship (T.G.). We thank the Barcelona Centro Nacional de Supercomputación for computer resources and technical support. The simulation is part of the Horizon collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dekel.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figures 1-9 with Legends and Supplementary References (PDF 1569 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekel, A., Birnboim, Y., Engel, G. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009). https://doi.org/10.1038/nature07648

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing