Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A solid-state light–matter interface at the single-photon level

Abstract

Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is an essential requirement for the implementation of quantum networks and quantum repeaters1,2,3. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases4,5,6,7,8,9, and with single trapped atoms in cavities10. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 107 atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid-state atomic medium11. The state of the light is mapped onto collective atomic excitations at an optical transition and stored for a pre-determined time of up to 1 μs before being released in a well-defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95 per cent are obtained, demonstrating the high coherence of the mapping process at the single-photon level. In addition, we show experimentally that our interface makes it possible to store and retrieve light fields in multiple temporal modes. Our results open the way to multimode solid-state quantum memories as a promising alternative to atomic gases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experiment.
Figure 2: Reversible mapping of a coherent state with = 0.5.
Figure 3: Study of the mapping process.
Figure 4: Multimode light–matter interface.
Figure 5: Interference fringes.

Similar content being viewed by others

References

  1. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  4. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005)

    Article  ADS  Google Scholar 

  6. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008)

    Article  ADS  Google Scholar 

  9. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008)

    Article  ADS  Google Scholar 

  10. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Preprint at 〈http://arxiv.org/abs/0805.4164〉 (2008)

  12. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Nunn, J. et al. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A 75, 011401 (2007)

    Article  ADS  Google Scholar 

  14. Moiseev, S. A. & Kröll, S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. Phys. Rev. Lett. 87, 173601 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Kraus, B. et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73, 020302 (2006)

    Article  ADS  Google Scholar 

  16. Böttger, T., Thiel, C. W., Sun, Y. & Cone, R. L. Optical decoherence and spectral diffusion at 1.5 μm in Er3+Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 73, 075101 (2006)

    Article  ADS  Google Scholar 

  17. Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Hétet, G., Longdell, J. J., Alexander, A. L., Lam, P. K. & Sellars, M. J. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008)

    Article  ADS  Google Scholar 

  21. Staudt, M. U. et al. Fidelity of an optical memory based on stimulated photon echoes. Phys. Rev. Lett. 98, 113601 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Staudt, M. U. et al. Interference of multimode photon echoes generated in spatially separated solid-state atomic ensembles. Phys. Rev. Lett. 99, 173602 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Ohlsson, N., Nilsson, M. & Kröll, S. Experimental investigation of delayed self-interference for single photons. Phys. Rev. A 68, 063812 (2003)

    Article  ADS  Google Scholar 

  24. Hasegawa, Y. et al. Phase transfer in time-delayed interferometry with nuclear resonant scattering. Phys. Rev. Lett. 75, 2216–2219 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Mitsunaga, M., Yano, R. & Uesugi, N. Spectrally programmed stimulated photon echo. Opt. Lett. 16, 264–266 (1991)

    Article  ADS  CAS  Google Scholar 

  26. Hastings-Simon, S. R. et al. Spectral hole burning spectroscopy in Nd3+:YVO4 . Phys. Rev. B 77, 125111 (2008)

    Article  ADS  Google Scholar 

  27. Hesselink, W. H. & Wiersma, D. A. Picosecond photon echoes stimulated from an accumulated grating. Phys. Rev. Lett. 43, 1991–1994 (1979)

    Article  ADS  CAS  Google Scholar 

  28. Rippe, L., Julsgaard, B., Walther, A., Ying, Y. & Kröll, S. Experimental quantum-state tomography of a solid-state qubit. Phys. Rev. A 77, 022307 (2008)

    Article  ADS  Google Scholar 

  29. de Seze, F., Lavielle, V., Lorgeré, I. & Le Gouët, J. L. Chirped pulse generation of a narrow absorption line in a Tm3+:YAG crystal. Opt. Commun. 223, 321–330 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Cavalli and M. Bettinelli for kindly lending us the Nd:YVO4 crystal. This work was supported by the Swiss NCCR Quantum Photonics and by the European Commission under the Integrated Project Qubit Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues de Riedmatten.

Supplementary information

Supplementary Information

This file contains Supplementary Data including Supplementary Figures 1-3 with Legends and a Supplementary Reference (PDF 183 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Riedmatten, H., Afzelius, M., Staudt, M. et al. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008). https://doi.org/10.1038/nature07607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07607

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing