Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HITS-CLIP yields genome-wide insights into brain alternative RNA processing

Abstract

Protein–RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein–RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova–RNA interactions in 3′ untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein–RNA interactions in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HITS-CLIP genome-wide map of Nova–RNA binding sites.
Figure 2: Nova–RNA interaction maps associated with Nova-dependent splicing regulation.
Figure 3: Nova CLIP tags cluster near polyadenylation sites.
Figure 4: Nova regulates alternative polyadenylation.

Similar content being viewed by others

References

  1. Zaug, A. J. & Cech, T. R. The intervening sequence RNA of Tetrahymena is an enzyme. Science 231, 470–475 (1986)

    Article  ADS  CAS  Google Scholar 

  2. de Duve, C. Co-chairman’s remarks: the RNA world: before and after. Gene 135, 29–31 (1993)

    Article  CAS  Google Scholar 

  3. Maizels, N. & Weiner, A. M. The ‘last ribo-organism’ was no breakthrough. Nature 330, 616 (1987)

    Article  ADS  CAS  Google Scholar 

  4. Gilbert, W. The RNA world. Nature 319, 618 (1986)

    Article  ADS  Google Scholar 

  5. Sharp, P. A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985)

    Article  CAS  Google Scholar 

  6. David, C. J. & Manley, J. L. The search for alternative splicing regulators: new approaches offer a path to a splicing code. Genes Dev. 22, 279–285 (2008)

    Article  CAS  Google Scholar 

  7. Moore, M. J. & Silver, P. A. Global analysis of mRNA splicing. RNA 14, 197–203 (2008)

    Article  CAS  Google Scholar 

  8. Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004)

    Article  CAS  Google Scholar 

  9. Darnell, J. C., Mostovetsky, O. & Darnell, R. B. FMRP RNA targets: identification and validation. Genes Brain Behav. 4, 341–349 (2005)

    Article  CAS  Google Scholar 

  10. Ule, J., Jensen, K., Mele, A. & Darnell, R. B. CLIP: a method for identifying protein–RNA interaction sites in living cells. Methods 37, 376–386 (2005)

    Article  CAS  Google Scholar 

  11. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Guil, S. & Caceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Struct. Mol. Biol. 14, 591–596 (2007)

    Article  CAS  Google Scholar 

  13. van der Brug, M. P. et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc. Natl Acad. Sci. USA 105, 10244–10249 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Buckanovich, R. J., Posner, J. B. & Darnell, R. B. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11, 657–672 (1993)

    Article  CAS  Google Scholar 

  15. Darnell, R. B. Developing global insight into RNA regulation. Cold Spring Harb. Symp. Quant. Biol. 71, 321–327 (2006)

    Article  CAS  Google Scholar 

  16. Buckanovich, R. J., Yang, Y. Y. & Darnell, R. B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J. Neurosci. 16, 1114–1122 (1996)

    Article  CAS  Google Scholar 

  17. Lewis, H. A. et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323–332 (2000)

    Article  CAS  Google Scholar 

  18. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Yang, Y. Y. L., Yin, G. L. & Darnell, R. B. The neuronal RNA binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nature Genet. 37, 844–852 (2005)

    Article  CAS  Google Scholar 

  21. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000)

    Article  CAS  Google Scholar 

  22. Dredge, B. K. & Darnell, R. B. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol. Cell. Biol. 23, 4687–4700 (2003)

    Article  CAS  Google Scholar 

  23. Dredge, B. K., Stefani, G., Engelhard, C. C. & Darnell, R. B. Nova autoregulation reveals dual functions in neuronal splicing. EMBO J. 24, 1608–1620 (2005)

    Article  CAS  Google Scholar 

  24. Hu, J., Lutz, C. S., Wilusz, J. & Tian, B. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11, 1485–1493 (2005)

    Article  CAS  Google Scholar 

  25. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ben-Dov, C., Hartmann, B., Lundgren, J. & Valcarcel, J. Genome-wide analysis of alternative pre-mRNA splicing. J. Biol. Chem. 283, 1229–1233 (2008)

    Article  CAS  Google Scholar 

  27. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006)

    Article  CAS  Google Scholar 

  28. Wang, G. S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Rev. Genet. 8, 749–761 (2007)

    Article  CAS  Google Scholar 

  29. Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet. 8, 533–543 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008)

    Article  CAS  Google Scholar 

  32. Markovtsov, V. et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20, 7463–7479 (2000)

    Article  CAS  Google Scholar 

  33. Polydorides, A. D., Okano, H. J., Yang, Y. Y., Stefani, G. & Darnell, R. B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl Acad. Sci. USA 97, 6350–6355 (2000)

    Article  ADS  CAS  Google Scholar 

  34. Yuan, Y. et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 35, 5474–5486 (2007)

    Article  CAS  Google Scholar 

  35. Grover, A. et al. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem–loop structure that regulates alternative splicing of exon 10. J. Biol. Chem. 274, 15134–15143 (1999)

    Article  CAS  Google Scholar 

  36. Early, P. et al. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell 20, 313–319 (1980)

    Article  CAS  Google Scholar 

  37. Rosenfeld, M. G. et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304, 129–135 (1983)

    Article  ADS  CAS  Google Scholar 

  38. Iseli, C. et al. Long-range heterogeneity at the 3′ ends of human mRNAs. Genome Res. 12, 1068–1074 (2002)

    Article  CAS  Google Scholar 

  39. Edwalds-Gilbert, G., Veraldi, K. L. & Milcarek, C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 25, 2547–2561 (1997)

    Article  CAS  Google Scholar 

  40. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Danckwardt, S., Hentze, M. W. & Kulozik, A. E. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 27, 482–498 (2008)

    Article  CAS  Google Scholar 

  42. Burge, C. B. et al. Alternative isoform regulation in human tissue transcriptomes. Nature doi: 10.1038/nature07509 (this issue)

  43. Zhang, H., Lee, J. Y. & Tian, B. Biased alternative polyadenylation in human tissues. Genome Biol. 6, R100 (2005)

    Article  Google Scholar 

  44. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002)

    Article  ADS  CAS  Google Scholar 

  45. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002)

    Article  CAS  Google Scholar 

  46. Gawande, B., Robida, M. D., Rahn, A. & Singh, R. Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J. 25, 1263–1272 (2006)

    Article  CAS  Google Scholar 

  47. Takagaki, Y., Seipelt, R. L., Peterson, M. L. & Manley, J. L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941–952 (1996)

    Article  CAS  Google Scholar 

  48. Veraldi, K. L. et al. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol. Cell. Biol. 21, 1228–1238 (2001)

    Article  CAS  Google Scholar 

  49. Clark, T. A. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol. 8, R64 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to members of the Darnell and Ule laboratories and J. Richter for critical discussions and review of the manuscript, B. Friedman for suggesting the use of exon arrays, F. Allain for communicating unpublished results, and M. Suarez-Farinas for help with statistics. This work was supported by NIH R01 NS34389 (R.B.D.) and the Howard Hughes Medical Institute. R.B.D. is an HHMI Investigator.

Author Contributions D.D.L. and R.B.D. wrote the paper. D.D.L., A.M. and J.J.F. performed the biochemical and CLIP experiments. J.U. and M.K. developed ASPIRE2 and analysed exon junction array data. D.D.L., S.W.C., X.W. and R.B.D. did bioinformatic analysis. D.D.L, J.C.D. and R.B.D. analysed the data. T.A.C., A.C.S. and J.E.B. developed the exon junction microarray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Darnell.

Ethics declarations

Competing interests

T.A.C., A.C.S. and J.E.B. are employees of Affymetrix, Inc.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-9 with Legends, Supplementary References, and Supplementary Tables 1-2 with Supplementary References (PDF 2472 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licatalosi, D., Mele, A., Fak, J. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). https://doi.org/10.1038/nature07488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07488

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing