Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions

Abstract

The first 600 million years of Earth history (the ‘Hadean’ eon) remain poorly understood, largely because there is no rock record dating from that era. Detrital Hadean igneous zircons from the Jack Hills1, Western Australia, however, can potentially provide insights into the conditions extant on our planet at that time. Results of geochemical investigations2,3,4,5,6,7,8,9,10,11,12,13 using these ancient grains have been interpreted to suggest the presence of a hydrosphere2,3,4,7,8 and continental crust9,10 before 4 Gyr. An underexploited characteristic of the >4 Gyr zircons is their diverse assemblage of mineral inclusions14,15,16,17. Here we present an examination of over 400 Hadean zircons from Jack Hills, which shows that some inclusion assemblages are conducive to thermobarometry. Our thermobarometric analyses of 4.02–4.19-Gyr-old inclusion-bearing zircons constrain their magmatic formation conditions to about 700 °C and 7 kbar. This result implies a near-surface heat flow of 75 mW m-2, about three to five times lower than estimates of Hadean global heat flow. As the only site of magmatism on modern Earth that is characterized by heat flow of about one-quarter of the global average is above subduction zones, we suggest that the magmas from which the Jack Hills Hadean zircons crystallized were formed largely in an underthrust environment, perhaps similar to modern convergent margins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cathodoluminescence and secondary electron micrographs of inclusion-bearing Jack Hills zircons.
Figure 2: Pressure–temperature pseudo-section for model S-type granite.
Figure 3: Pressure–temperature diagram.

Similar content being viewed by others

References

  1. Spaggiari, C. V., Pidgeon, R. T. & Wilde, S. A. The Jack Hills greenstone belt, Western Australia. Part 2: Lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons. Precambr. Res. 155, 261–286 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178–181 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Cavosie, A. J., Valley, J. W. & Wilde, S. A. Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Trail, D. et al. Constraints on Hadean zircon protoliths from oxygen isotopes, REEs and Ti-thermometry. Geochem. Geophys. Geosyst. 8, Q06014 10.1029/2006GC001449 (2007)

    Article  Google Scholar 

  5. Turner, G., Harrison, T. M., Holland, G., Mojzsis, S. J. & Gilmour, J. Extinct Pu-244 in ancient zircons. Science 306, 89–91 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Turner, G. et al. Pu–Xe, U–Xe, U–Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth Planet. Sci. Lett. 261, 491–499 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Harrison, T. M. & Schmitt, A. K. High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet. Sci. Lett. 261, 9–19 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Harrison, T. M. et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Amelin, Y. Sm–Nd systematics of zircon. Chem. Geol. 211, 375–387 (2005)

    Article  ADS  Google Scholar 

  12. Caro, G. et al. Precise analysis of 142Nd/144Nd in small samples: Application to Hadean zircons from Jack Hills (W. Australia) and diamond inclusions from Finsch (S. Africa). Chem. Geol. 247, 253–265 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Maas, R. & McCulloch, M. T. The provenance of Archean clastic metasediments in the Narryer gneiss complex, Western Australia: Trace element geochemistry, Nd isotopes, and U–Pb ages from detrital zircons. Geochim. Cosmochim. Acta 55, 1915–1932 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Trail, D., Mojzsis, S. J. & Harrison, T. M. Inclusion mineralogy of pre-4.0 Ga zircons from Jack Hills, Western Australia: A progress report. Geochim. Cosmochim. Acta 68, A743 (2004)

    Google Scholar 

  16. Cavosie, A. J., Wilde, S. A., Liu, D., Weiblen, P. & Valley, J. W. Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambr. Res. 134, 251–279 (2004)

    Article  ADS  Google Scholar 

  17. Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T. & Wilde, S. A. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448, 917–920 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Anderson, J. L. Status of thermobarometry in granitic batholiths. Trans. R. Soc. Edinb. Earth Sci. 87, 125–138 (1996)

    CAS  Google Scholar 

  19. Massonne, H.-J. & Szpurka, Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O. Lithos 41, 229–250 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Holland, T. J. B. & Powell, R. An internally consistent thermodynamic data set for phases of petrologic interest. J. Metamorph. Geol. 16, 309–343 (1998)

    Article  ADS  CAS  Google Scholar 

  21. McLaren, S., Sandiford, M., Powell, R., Neumann, N. & Woodhead, J. Palaeozoic intraplate crustal anatexis in the Mount Painter Province, South Australia: Timing, thermal budgets and the role of crustal heat production. J. Petrol. 47, 2281–2302 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Coggon, R. & Holland, T. J. B. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 20, 683–696 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Helz, R. T. Phase relations of basalts in their melting ranges at PH2O = 5 kb. Part II. Melt composition. J. Petrol. 17, 139–193 (1976)

    Article  ADS  CAS  Google Scholar 

  24. Turcotte, D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems 2nd edn, 133 (Wiley, 2002)

    Book  Google Scholar 

  25. Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)

    Article  ADS  Google Scholar 

  26. Bickle, M. J. Heat loss from the Earth: Constraints on Archaean tectonics from the relation between geothermal gradients and the rate of plate production. Earth Planet. Sci. Lett. 40, 301–315 (1978)

    Article  ADS  Google Scholar 

  27. Abbott, D. H. & Hoffman, S. E. Archaean plate tectonics revisited. Part 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics 3, 429–448 (1984)

    Article  ADS  Google Scholar 

  28. Smith, J. V. The first 800 million years of Earth’s history. Phil. Trans. R. Soc. Lond. A 301, 401–422 (1981)

    Article  ADS  CAS  Google Scholar 

  29. Sleep, N. L. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105, 17563–17578 (2000)

    Article  ADS  Google Scholar 

  30. Bedini, R. M., Blichert-Toft, J., Boyet, M. & Albarede, F. Isotopic constraints on the cooling of the continental lithosphere. Earth Planet. Sci. Lett. 223, 99–111 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Blackwell, D. D., Steele, J. L. & Carter, L. S. in Neotectonics of North America (eds Slemmons, D. B., Engdahl, E. R. and Blackwell, D. D.) 423–437 (DNAG Decade Map 1, Geological Society of America, 1991)

    Google Scholar 

  32. White, R. W., Powell, R. W. & Holland, T. J. B. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J. Metamorph. Geol. 19, 139–153 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant EAR-0635969 and ARC grant DP0666497. We acknowledge facility support from the Instrumentation and Facilities Program of the National Science Foundation. We thank R. Powell for advice on using THERMOCALC, F. Kyte for assistance with the EMPA analyses, A. Schmitt and P. Holden for assistance with the ion microprobe analyses, and W. Schopf and A. Kudryavtsev for confocal Raman imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, M., Harrison, T. & Manning, C. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008). https://doi.org/10.1038/nature07465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07465

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing