Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Associative learning of social value

Abstract

Our decisions are guided by information learnt from our environment. This information may come via personal experiences of reward, but also from the behaviour of social partners1,2. Social learning is widely held to be distinct from other forms of learning in its mechanism and neural implementation; it is often assumed to compete with simpler mechanisms, such as reward-based associative learning, to drive behaviour3. Recently, neural signals have been observed during social exchange reminiscent of signals seen in studies of associative learning4. Here we demonstrate that social information may be acquired using the same associative processes assumed to underlie reward-based learning. We find that key computational variables for learning in the social and reward domains are processed in a similar fashion, but in parallel neural processing streams. Two neighbouring divisions of the anterior cingulate cortex were central to learning about social and reward-based information, and for determining the extent to which each source of information guides behaviour. When making a decision, however, the information learnt using these parallel streams was combined within ventromedial prefrontal cortex. These findings suggest that human social valuation can be realized by means of the same associative processes previously established for learning other, simpler, features of the environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental task and behavioural findings.
Figure 2: Predictions and prediction errors in social and non-social domains.
Figure 3: Agency-specific learning rates dissociate in the ACC.
Figure 4: Combination of expected value of chosen option in VMPFC.

Similar content being viewed by others

References

  1. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982)

    Book  Google Scholar 

  3. Delgado, M. R., Frank, R. H. & Phelps, E. A. Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neurosci. 8, 1611–1618 (2005)

    Article  CAS  Google Scholar 

  4. King-Casas, B. et al. Getting to know you: reputation and trust in a two-person economic exchange. Science 308, 78–83 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Rilling, J. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002)

    Article  CAS  Google Scholar 

  6. Gallagher, H. L., Jack, A. I., Roepstorff, A. & Frith, C. D. Imaging the intentional stance in a competitive game. Neuroimage 16, 814–821 (2002)

    Article  Google Scholar 

  7. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998)

    MATH  Google Scholar 

  8. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nature Neurosci. 10, 1214–1221 (2007)

    Article  CAS  Google Scholar 

  9. Courville, A. C., Daw, N. D. & Touretzky, D. S. Bayesian theories of conditioning in a changing world. Trends Cogn. Sci. 10, 294–300 (2006)

    Article  Google Scholar 

  10. Dayan, P., Kakade, S. & Montague, P. R. Learning and selective attention. Nature Neurosci. 3 (Suppl.). 1218–1223 (2000)

    Article  CAS  Google Scholar 

  11. O’Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004)

    Article  ADS  Google Scholar 

  12. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  CAS  Google Scholar 

  13. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nature Neurosci. 10, 647–656 (2007)

    Article  CAS  Google Scholar 

  15. Tanaka, S. C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neurosci. 7, 887–893 (2004)

    Article  CAS  Google Scholar 

  16. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005)

    Article  CAS  Google Scholar 

  18. Haruno, M. & Kawato, M. Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. J. Neurophysiol. 95, 948–959 (2006)

    Article  Google Scholar 

  19. D’Ardenne, K., McClure, S. M., Nystrom, L. E. & Cohen, J. D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267 (2008)

    Article  ADS  Google Scholar 

  20. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J. & Rushworth, M. F. Optimal decision making and the anterior cingulate cortex. Nature Neurosci. 9, 940–947 (2006)

    Article  CAS  Google Scholar 

  21. Deaner, R. O., Khera, A. V. & Platt, M. L. Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr. Biol. 15, 543–548 (2005)

    Article  CAS  Google Scholar 

  22. Shepherd, S. V., Deaner, R. O. & Platt, M. L. Social status gates social attention in monkeys. Curr. Biol. 16, R119–R120 (2006)

    Article  CAS  Google Scholar 

  23. Rudebeck, P. H., Buckley, M. J., Walton, M. E. & Rushworth, M. F. A role for the macaque anterior cingulate gyrus in social valuation. Science 313, 1310–1312 (2006)

    Article  ADS  CAS  Google Scholar 

  24. O’Doherty, J. P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776 (2004)

    Article  Google Scholar 

  25. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nature Neurosci. 10, 1625–1633 (2007)

    Article  CAS  Google Scholar 

  26. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nature Rev. Neurosci. 7, 268–277 (2006)

    Article  CAS  Google Scholar 

  27. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000)

    Article  CAS  Google Scholar 

  28. Castelli, F., Frith, C., Happe, F. & Frith, U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125, 1839–1849 (2002)

    Article  Google Scholar 

  29. Van Hoesen, G. W., Morecraft, R. J. & Vogt, B. A. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) (Birkhäuser, 1993)

    Google Scholar 

  30. Plassmann, H., O’Doherty, J. & Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007)

    Article  CAS  Google Scholar 

  31. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 (Suppl. 1). S208–S219 (2004)

    Article  Google Scholar 

  32. Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgments We would like to acknowledge funding from the UK MRC (T.E.J.B., M.F.S.R.), the Wellcome Trust (L.T.H.) and the UK EPSRC (M.W.W.). We thank S. Knight for helping with data acquisition, and K. Watkins for help with figure preparation.

Author contributions All four authors contributed to generating the hypothesis and designing the experiment. Where specific roles can be assigned, L.T.H. collected the data, T.E.J.B. and L.T.H. analysed the data, T.E.J.B. and M.W.W. built the model, and M.F.S.R. supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. J. Behrens.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Data, Supplementary Figures S1-S3, Supplementary Figure 4 with Legends and Supplementary References. (PDF 1217 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, T., Hunt, L., Woolrich, M. et al. Associative learning of social value. Nature 456, 245–249 (2008). https://doi.org/10.1038/nature07538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing