Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape

Abstract

Relative motion between two contacting surfaces can produce visible light, called triboluminescence1. This concentration of diffuse mechanical energy into electromagnetic radiation has previously been observed to extend even to X-ray energies2. Here we report that peeling common adhesive tape in a moderate vacuum produces radio and visible emission3,4, along with nanosecond, 100-mW X-ray pulses that are correlated with stick–slip peeling events. For the observed 15-keV peak in X-ray energy, various models5,6 give a competing picture of the discharge process, with the length of the gap between the separating faces of the tape being 30 or 300 μm at the moment of emission. The intensity of X-ray triboluminescence allowed us to use it as a source for X-ray imaging. The limits on energies and flash widths that can be achieved are beyond current theories of tribology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apparatus for studying high-energy emission from peeling tape.
Figure 2: Correlation between X-rays, force and radio frequency.
Figure 3: Spectrum of X-ray energies from peeling one roll of tape.
Figure 4: Light spectra from peeling tape.

Similar content being viewed by others

References

  1. Walton, A. J. Triboluminescence. Adv. Phys. 26, 887–948 (1977)

    Article  ADS  CAS  Google Scholar 

  2. Karasev, V. V., Krotova, N. A. & Deryagin, B. W. Study of electronic emission during the stripping of a layer of high polymer from glass in a vacuum. [in Russian] Dokl . Akad. Nauk. SSR 88, 777–780 (1953)

    CAS  Google Scholar 

  3. Harvey, N. E. The luminescence of adhesive tape. Science 89, 460–461 (1939)

    Article  ADS  CAS  Google Scholar 

  4. Zhenyi, M., Fan, J. & Dickinson, J. T. Properties of the photon emission accompanying the peeling of a pressure-sensitive adhesive. J. Adhesion 25, 63–77 (1988)

    Article  CAS  Google Scholar 

  5. Mesyats, G. A. Ectons and their role in plasma processes. Plasma Phys. Contr. Fusion 47, A109–A151 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Raizer, Y. Gas Discharge Physics (Springer, 1991)

    Book  Google Scholar 

  7. Putterman, S. J. & Weninger, K. R. Sonoluminescence: how bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445–476 (2000)

    Article  ADS  Google Scholar 

  8. Harper, W. R. Contact and Frictional Electrification (Laplacian Press, 1998)

    Google Scholar 

  9. Deryagin, B. V., Krotova, N. A. & Smilga, V. P. Adhesion of Solids (Consultants Bureau, 1978)

    Book  Google Scholar 

  10. Black, R. A. Hallett, J. The mystery of cloud electrification. Am. Sci. 86, 526–534 (1998)

    Article  ADS  Google Scholar 

  11. Dwyer, J. R. et al. Energetic radiation produced during rocket-triggered lightning. Science 299, 694–697 (2003)

    Article  ADS  CAS  Google Scholar 

  12. McCarty, L. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008)

    Article  CAS  Google Scholar 

  13. Gay, C. & Leibler, L. Theory of tackiness. Phys. Rev. Lett. 82, 936–939 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Obreimoff, J. W. The splitting strength of mica. Proc. R. Soc. A 127, 290–297 (1930)

    Article  ADS  Google Scholar 

  15. Zosel, A. Adhesive failure and deformation behavior of polymers. J. Adhesion 30, 135–149 (1989)

    Article  CAS  Google Scholar 

  16. Budakian, R., Weninger, K., Hiller, R. A. & Putterman, S. J. Picosecond discharges and stick–slip friction at a moving meniscus of mercury on glass. Nature 391, 266–268 (1997)

    Article  ADS  Google Scholar 

  17. Klyuev, V. A., Toporov, Aliev, A. D., Chalykh, A. E. & Lipson, A. G. The effect of air pressure on the parameters of x-ray emission accompanying adhesive and cohesive breaking of solids. Sov. Phys. Tech. Phys. 34, 361–364 (1989)

    Google Scholar 

  18. Baksht, R. B., Vavilov, S. P. & Urbayaev, M. N. Duration of the x-ray emission arising in a vacuum discharge. Izv. Ucheb. Zaved. Fiz. 2, 140–141 (1973)

    Google Scholar 

  19. Chervenak, J. G. & Liuzzi, A. Experimental thick target Bremsstrahlung spectra from electrons in the range 10–30keV. Phys. Rev. A. 12, 26–33 (1975)

    Article  ADS  CAS  Google Scholar 

  20. Graf von Harrach, H. & Chapman, B. N. Charge effects in thin film adhesion. Thin Solid Films 12, 157–161 (1972)

    Article  Google Scholar 

  21. Kendall, K. Thin-film peeling—the elastic term. J. Phys. D 8, 1449–1453 (1975)

    Article  ADS  Google Scholar 

  22. Chikina, I. & Gay, C. Cavitation in adhesives. Phys. Rev. Lett. 85, 4546–4549 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Urahama, Y. Effect of peel load on stringiness phenomena and peel speed of pressure-sensitive adhesive tape. J. Adhesion 31, 47–58 (1989)

    Article  CAS  Google Scholar 

  24. De, R. & Ananthakrishna, G. Dynamics of the peel front and the nature of acoustic emission during peeling of an adhesive tape. Phys. Rev. Lett. 97, 165503–165506 (2006)

    Article  ADS  Google Scholar 

  25. Miura, T., Chini, M. & Bennewitz, R. Forces, charges, and light emission during the rupture of adhesive contacts. J. Appl. Phys. 102, 103509 (2007)

    Article  ADS  Google Scholar 

  26. Freund, F. & Sornette, D. Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks. Tectonophysics 431, 33–47 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Eddingsaas, N. C. & Suslick, K. S. Light from sonication of crystal slurries. Nature 444, 163 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Dickinson, J. T. et al. Dynamical tribological probes: particle emission and transient electrical measurements. Tribology Lett. 3, 53–67 (1997)

    Article  CAS  Google Scholar 

  29. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Naranjo, B., Gimzewski, J. K. & Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 434, 1115–1117 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Cortet, P. P., Ciccotti, M. & Vanel, L. Imaging the stick–slip peeling of an adhesive tape under a constant load. J. Statist. Mech. 3, P03005 (2007)

    Google Scholar 

  32. Mesyats, G. A. Nanosecond x-ray pulses. Sov. Phys. Tech. Phys. 19, 948–951 (1975)

    ADS  Google Scholar 

  33. Orville, R. E. & Henderson, R. W. Absolute spectral measurements of lightning from 375 to 880 nm. J. Atmos. Sci. 41, 3180–3187 (1984)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Lofstedt for bringing to our attention the importance of ref. 14; C. Regan for advice; B. Naranjo for many insights and for use of his uniquely designed liquid scintillator detection system; B. Kappus and S. Khalid for experimental assistance; J. Cambier for valuable discussions, E. Adams for archival assistance; and A. Bass for an independent translation of ref. 2. We thank Hamamatsu Corporation for lending us X-ray cameras. Various stages of this research were supported by the Office of Naval Research and the Defense Advanced Research Projects Agency (Microsystems Technologies Office and Defense Sciences Office) . J.E. thanks the Fulbright–Garcia Robles Scholarship Program and UC-MEXUS-CONACYT for support.

Author Contributions J.H. was instrumental in motivating this research. J.E. pinned down the correlation between the force and X-ray emission. C.C. obtained the GeV pulses, and S.P. is the principal investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos G. Camara or Juan V. Escobar.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4 with Legends (PDF 1174 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camara, C., Escobar, J., Hird, J. et al. Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape. Nature 455, 1089–1092 (2008). https://doi.org/10.1038/nature07378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07378

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing