Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle

Abstract

Komatiites are volcanic rocks mainly of Archaean age that formed by unusually high degrees of melting of mantle peridotite. Their origin is controversial and has been attributed to either anhydrous melting of anomalously hot mantle1,2,3 or hydrous melting at temperatures only modestly greater than those found today4,5. Here we determine the original Fe3+/ΣFe ratio of 2.7-Gyr-old komatiitic magma from Belingwe, Zimbabwe6, preserved as melt inclusions in olivine, to be 0.10 ± 0.02, using iron K-edge X-ray absorption near-edge structure spectroscopy. This value is consistent with near-anhydrous melting of a source with a similar oxidation state to the source of present-day mid-ocean-ridge basalt. Furthermore, this low Fe3+/ΣFe value, together with a water content of only 0.2–0.3 wt% (ref. 7), excludes the possibility that the trapped melt contained significantly more water that was subsequently lost from the inclusions by reduction to H2 and diffusion. Loss of only 1.5 wt% water by this mechanism would have resulted in complete oxidation of iron (that is, the Fe3+/ΣFe ratio would be 1). There is also no petrographic evidence for the loss of molecular water. Our results support the identification of the Belingwe komatiite as a product of high mantle temperatures (1,700 °C), rather than melting under hydrous conditions (3–5-wt% water), confirming the existence of anomalously hot mantle in the Archaean era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron K-edge XANES spectra of quenched silicate melts.
Figure 2: Calibration curve for determining Fe 3+ /ΣFe from the XANES pre-edge centroid energy.
Figure 3: Optical image of an olivine-hosted melt inclusion (after heating) from a komatiite of the Belingwe belt, Zimbabwe.

Similar content being viewed by others

References

  1. Green, D. H. Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology 3, 15–18 (1975)

    Article  ADS  CAS  Google Scholar 

  2. Nisbet, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. J. Constraining the potential temperature of the Archean mantle - a review of the evidence from komatiites. Lithos 30, 291–307 (1993)

    Article  CAS  Google Scholar 

  3. Arndt, N. et al. Were komatiites wet? Geology 26, 739–742 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Allegre, C. J. in Komatiites (eds Arndt, N. T. & Nisbet, E. G.) 495–500 (Springer, 1982)

    Google Scholar 

  5. Parman, S. W., Grove, T. L. & Dann, J. C. The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett. 28, 2513–2516 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Nisbet, E. G. et al. Uniquely fresh 2.7 Ga komatiites from the Belingwe greenstone-belt, Zimbabwe. Geology 15, 1147–1150 (1987)

    Article  ADS  CAS  Google Scholar 

  7. Danyushevsky, L. V., Gee, M. A. M., Nisbet, E. G. & Cheadle, M. J. Olivine-hosted melt inclusions in Belingwe komatiites: implications for cooling history, parental magma composition and its H2O content. Geochim. Cosmochim. Acta 66 (Suppl. 1). A168 (2002)

    Google Scholar 

  8. Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source region. Contrib. Mineral. Petrol. 106, 129–141 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Self, S., Thordarson, T. & Widdowson, M. Gas fluxes from flood basalt eruptions. Elements 1, 283–287 (2005)

    Article  CAS  Google Scholar 

  10. Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Oxidation states of mid-ocean ridge basalt glasses. Earth Planet. Sci. Lett. 79, 397–411 (1986)

    Article  ADS  CAS  Google Scholar 

  11. Bezos, A. & Humler, E. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim. Cosmochim. Acta 69, 711–725 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Jayasuriya, K. D., O’Neill, H. St C., Berry, A. J. & Campbell, S. J. A Mössbauer study of the oxidation state of iron in silicate melts. Am. Mineral. 89, 1597–1609 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Garvie, L. A. J. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Fialin, M., Bézos, A., Wagner, C., Magnien, V. & Humler, E. Quantitative electron microprobe analysis of Fe3+/ΣFe: basic concepts and experimental protocol for glasses. Am. Mineral. 89, 654–662 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Delaney, J. S., Dyar, M. D., Sutton, S. R. & Bajt, S. Redox ratios with relevant resolution: solving an old problem by using the synchrotron microXANES probe. Geology 26, 139–142 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Dyar, M. D., Delaney, J. S. & Sutton, S. R. Fe XANES spectra of iron-rich micas. Eur. J. Mineral. 13, 1079–1098 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Bonnin-Mosbah, M. et al. Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro-probe. J. Non-Cryst. Solids 288, 103–113 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Berry, A. J., O’Neill, H. St C., Jayasuriya, K. D., Campbell, S. J. & Foran, G. J. XANES calibrations for the oxidation state of iron in a silicate glass. Am. Mineral. 88, 967–977 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Berry, A. J. & O’Neill, H. St C. A XANES determination of the oxidation state of chromium in silicate glasses. Am. Mineral. 89, 790–798 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997)

    Article  CAS  Google Scholar 

  21. Wilke, M., Farges, F., Petit, P.-E., Brown, G. E. & Martin, F. Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am. Mineral. 86, 714–730 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Wilke, M., Partzsch, G. M., Bernhardt, R. & Lattar, D. Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chem. Geol. 213, 71–87 (2004)

    Article  ADS  CAS  Google Scholar 

  23. McDonough, W. F. & Ireland, T. R. The intraplate origin of komatiites inferred from trace elements in glass inclusions. Nature 365, 432–434 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Danyushevsky, L. V., McNeill, A. W. & Sobolev, A. V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183, 5–24 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Danyushevsky, L. V., Sokolov, S. & Falloon, T. J. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J. Petrol. 43, 1651–1671 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994)

    Article  ADS  CAS  Google Scholar 

  27. Palme, H. & O’Neill, H. St C. in The Mantle and Core (ed. Carlson, R. W.) 1–38 (Treatise on Geochemistry 2, Elsevier, 2003)

    Google Scholar 

  28. Canil, D. & O’Neill, H. St C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Parkinson, I. J. & Arculus, R. J. The redox state of subduction zones: insights from arc-peridotites. Chem. Geol. 160, 409–423 (1999)

    Article  ADS  CAS  Google Scholar 

  31. Danyushevsky, L. V., Berry, A. J., O’Neill, H. St C., Newville, M. & Sutton, S. R. Fe3+/Fe2+ of melt inclusions: implications for melt H2O contents. Geochim. Cosmochim. Acta 71, A200 (2007)

    Google Scholar 

  32. Galimov, E. M. Redox evolution of the Earth caused by a multistage formation of its core. Earth Planet. Sci. Lett. 233, 263–276 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. R. Scott for sample preparation, N. Métrich for providing the pantellerite glass standards and G. J. Foran for assistance with XANES experiments at the Australian National Beamline Facility that provided the foundations for the present study. We also thank the Australian Research Council (DP0450252), the Access to Major Research Facilities Programme (funded by the Commonwealth of Australia) and the Natural Environment Research Council for financial support. GeoSoilEnviroCARS is supported by the US National Science Foundation (EAR-0622171) and the US Department of Energy (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38.

Author Contributions A.J.B. and H.StC.O’N. prepared the synthetic samples and collected the XANES spectra, with assistance from M.N. and S.R.S. The natural samples were prepared and characterised by L.V.D., who identified the importance of determining Fe3+/ΣFe in komatiite melt inclusions. A.J.B. interpreted the spectra and produced the manuscript with significant contributions from H.StC.O’N. and L.V.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Berry.

Supplementary information

Supplementary Information

This file contains Supplementary Data to Figure 1b (PDF 103 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, A., Danyushevsky, L., St C. O’Neill, H. et al. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008). https://doi.org/10.1038/nature07377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07377

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing