Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for the two-helix finger of the SecA ATPase in protein translocation

Abstract

An important step in the biosynthesis of many proteins is their partial or complete translocation across the plasma membrane in prokaryotes or the endoplasmic reticulum membrane in eukaryotes1. In bacteria, secretory proteins are generally translocated after completion of their synthesis by the interaction of the cytoplasmic ATPase SecA and a protein-conducting channel formed by the SecY complex2. How SecA moves substrates through the SecY channel is unclear. However, a recent structure of a SecA–SecY complex raises the possibility that the polypeptide chain is moved by a two-helix finger domain of SecA that is inserted into the cytoplasmic opening of the SecY channel3. Here we have used disulphide-bridge crosslinking to show that the loop at the tip of the two-helix finger of Escherichia coli SecA interacts with a polypeptide chain right at the entrance into the SecY pore. Mutagenesis demonstrates that a tyrosine in the loop is particularly important for translocation, but can be replaced by some other bulky, hydrophobic residues. We propose that the two-helix finger of SecA moves a polypeptide chain into the SecY channel with the tyrosine providing the major contact with the substrate, a mechanism analogous to that suggested for hexameric, protein-translocating ATPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An essential tyrosine at the tip of the two-helix finger.
Figure 2: Contact of a translocation intermediate with the pore of SecY.
Figure 3: The two-helix finger of SecA interacts with a translocating substrate.
Figure 4: Model of SecA translocating a polypeptide into the SecY channel.

Similar content being viewed by others

References

  1. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990)

    Article  CAS  PubMed  Google Scholar 

  3. Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature doi: 10.1038/nature07335 (this issue)

  4. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)

    Article  CAS  PubMed  Google Scholar 

  5. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Cannon, K. S., Or, E., Clemons, W. M., Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219–225 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Jarosik, G. P. & Oliver, D. B. Isolation and analysis of dominant secA mutations in Escherichia coli . J. Bacteriol. 173, 860–868 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vrontou, E., Karamanou, S., Baud, C., Sianidis, G. & Economou, A. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem. 279, 22490–22497 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Osborne, A. R., Clemons, W. M. & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937–10942 (2004)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. Bensing, B. A., Takamatsu, D. & Sullam, P. M. Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol. Microbiol. 58, 1468–1481 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Siboo, I. R., Chaffin, D. O., Rubens, C. E. & Sullam, P. M. Characterization of the accessory Sec system of Staphylococcus aureus . J. Bacteriol. 190, 6188–6196 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matlack, K. E. S., Plath, K., Misselwitz, B. & Rapoport, T. A. Protein transport by purified yeast Sec complex and Kar2p without membranes. Science 277, 938–941 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Matsuyama, S., Kimura, E. & Mizushima, S. Complementation of two overlapping fragments of SecA, a protein translocation ATPase of Escherichia coli, allows ATP binding to its amino-terminal region. J. Biol. Chem. 265, 8760–8765 (1990)

    CAS  PubMed  Google Scholar 

  18. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Erlandson, K. J., Or, E., Osborne, A. R. & Rapoport, T. A. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. J. Biol. Chem. 283, 15709–15715 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Martin, A., Baker, T. A. & Sauer, R. T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 29, 441–450 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182–50187 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Park, E. et al. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280, 22892–22898 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Collinson, I. et al. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J. 20, 2462–2471 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. DeLaBarre and B. Burton for critical reading of the manuscript, and R. Sauer, T. Baker and A. Horwich for discussion. The work was supported by an NIH grant. T.A.R. is a HHMI investigator. Y.N. was supported by the Damon Runyon Cancer Research Foundation (DRG 1953-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Rapoport.

Supplementary information

Supplementary Information

This file contains a Supplementary Figure S1 with Legend, Supplementary Tables S1-S3 and Supplementary References (PDF 2862 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlandson, K., Miller, S., Nam, Y. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984–987 (2008). https://doi.org/10.1038/nature07439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07439

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing