Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clustered star formation as a natural explanation for the Hα cut-off in disk galaxies

Abstract

The rate of star formation in a galaxy is often determined by the observation of emission in the Hα line, which is related to the presence of short-lived massive stars. Disk galaxies show a strong cut-off in Hα radiation at a certain galactocentric distance, which has led to the conclusion that star formation is suppressed in the outer regions of disk galaxies. This is seemingly in contradiction to recent observations1 in the ultraviolet which imply that disk galaxies have star formation beyond the Hα cut-off, and that the star-formation-rate surface density is linearly related to the underlying gas surface density, which is a shallower relationship than that derived from Hα luminosities2. In a galaxy-wide formulation, the clustered nature of star formation has recently led to the insight that the total galactic Hα luminosity is nonlinearly related to the galaxy-wide star formation rate3. Here we show that a local formulation of the concept of clustered star formation naturally leads to a steeper radial decrease in the Hα surface luminosity than in the star-formation-rate surface density, in quantitative agreement with the observations, and that the observed Hα cut-off arises naturally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hα luminosity surface density ( Σ) versus total gas surface density ( Σgas).
Figure 2: Star-formation-rate surface density ( ΣSFR) versus galactocentric radius ( r).

Similar content being viewed by others

References

  1. Boissier, S. et al. Radial variation of attenuation and star formation in the largest late-type disks observed with GALEX. Astrophys. J. Suppl. Ser. 173, 524–537 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Kennicutt, R. C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Pflamm-Altenburg, J., Weidner, C. & Kroupa, P. Converting Hα luminosities into star formation rates. Astrophys. J. 671, 1550–1558 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Vanbeveren, D. Theoretical evolution of massive stellar aggregates. Astron. Astrophys. 124, 71–76 (1983)

    ADS  Google Scholar 

  5. Weidner, C. & Kroupa, P. The variation of integrated star initial mass functions among galaxies. Astrophys. J. 625, 754–762 (2005)

    Article  ADS  Google Scholar 

  6. Weidner, C., Kroupa, P. & Larsen, S. S. Implications for the formation of star clusters from extragalactic star formation rates. Mon. Not. R. Astron. Soc. 350, 1503–1510 (2004)

    Article  ADS  Google Scholar 

  7. Weidner, C. & Kroupa, P. Evidence for a fundamental stellar upper mass limit from clustered star formation. Mon. Not. R. Astron. Soc. 348, 187–191 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Köppen, J., Weidner, C. & Kroupa, P. A possible origin of the mass-metallicity relation of galaxies. Mon. Not. R. Astron. Soc. 375, 673–684 (2007)

    Article  ADS  Google Scholar 

  9. Hoversten, E. A. & Glazebrook, K. Evidence for a nonuniversal stellar initial mass function from the integrated properties of SDSS galaxies. Astrophys. J. 675, 163–187 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Lada, C. J. & Lada, E. A. Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)

    Article  ADS  Google Scholar 

  11. Kennicutt, R. C. et al. Star formation in NGC 5194 (M51a). II. The spatially resolved star formation law. Astrophys. J. 671, 333–348 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Zasov, A. V. & Abramova, O. V. The star-formation efficiency and density of the disks of spiral galaxies. Astron. Rep. 50, 874–886 (2006)

    Article  ADS  Google Scholar 

  13. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    Article  ADS  Google Scholar 

  14. Kroupa, P. The initial mass function of stars: Evidence for uniformity in variable systems. Science 295, 82–91 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Kennicutt, R. C. The star formation law in galactic disks. Astrophys. J. 344, 685–703 (1989)

    Article  ADS  CAS  Google Scholar 

  16. Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S. & Hunter, D. A. Diffuse ionized gas in spiral galaxies: Probing Lyman continuum photon leakage from H II regions? Astron. J. 111, 2265–2279 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Zaritsky, D. & Christlein, D. On the extended knotted disks of galaxies. Astron. J. 134, 135–141 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Thilker, D. A. et al. Recent star formation in the extreme outer disk of M83. Astrophys. J. 619, L79–L82 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Lelièvre, M. & Roy, J.-R. The H II regions of the extreme outer disk of NGC 628. Astron. J. 120, 1306–1315 (2000)

    Article  ADS  Google Scholar 

  20. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    Article  ADS  Google Scholar 

  21. Cowie, L. L. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes. Astrophys. J. 245, 66–71 (1981)

    Article  ADS  CAS  Google Scholar 

  22. Hunter, D. A., Elmegreen, B. G. & van Woerden, H. Neutral hydrogen and star formation in the irregular galaxy NGC 2366. Astrophys. J. 556, 773–800 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Elmegreen, B. G. & Hunter, D. A. Radial profiles of star formation in the far outer regions of galaxy disks. Astrophys. J. 636, 712–720 (2006)

    Article  ADS  Google Scholar 

  24. Krumholz, M. R. & McKee, C. F. A minimum column density of 1 g cm-2 for massive star formation. Nature 451, 1082–1084 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Kenney, J. D. P. & Young, J. S. The effects of environment on the molecular and atomic gas properties of large Virgo cluster spirals. Astrophys. J. 344, 171–199 (1989)

    Article  ADS  CAS  Google Scholar 

  26. Wong, T. & Blitz, L. The relationship between gas content and star formation in molecule-rich spiral galaxies. Astrophys. J. 569, 157–183 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Schuster, K. F., Kramer, C., Hitschfeld, M., Garcia-Burillo, S. & Mookerjea, B. A complete 12CO 2–1 map of M 51 with HERA. I. Radial averages of CO, HI, and radio continuum. Astron. Astrophys. 461, 143–151 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Crosthwaite, L. P. & Turner, J. L. CO(1–0), CO(2–1), and neutral gas in NGC 6946: Molecular gas in a late-type, gas-rich, spiral galaxy. Astron. J. 134, 1827–1842 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Kennicutt, R. C., Tamblyn, P. & Congdon, C. E. Past and future star formation in disk galaxies. Astrophys. J. 435, 22–36 (1994)

    Article  ADS  Google Scholar 

  30. Martin, C. L. & Kennicutt, R. C. Star formation thresholds in galactic disks. Astrophys. J. 555, 301–321 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. S. de Boer for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pflamm-Altenburg.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Table 1 and Supplementary Figures 1-3 with Legends (PDF 230 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflamm-Altenburg, J., Kroupa, P. Clustered star formation as a natural explanation for the Hα cut-off in disk galaxies. Nature 455, 641–643 (2008). https://doi.org/10.1038/nature07266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07266

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing