Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale magnetic sensing with an individual electronic spin in diamond

Abstract

Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences1,2,3,4,5. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 μT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules5,6 to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory7. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature8. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 μT Hz-1/2 for a diamond nanocrystal with a diameter of 30 nm.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of the magnetic sensor, which is based on individual nitrogen-vacancy electronic spins in diamond.
Figure 2: Demonstration of spin-echo-based magnetometry with an individual nitrogen-vacancy electronic spin in a bulk diamond sample.
Figure 3: Characterization of magnetometer sensitivity and minimum measurable AC magnetic field.
Figure 4: Demonstration of magnetic sensing with a single nitrogen-vacancy electronic spin in a diamond nanocrystal.

Similar content being viewed by others

References

  1. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Kleiner, R., Koelle, D., Ludwig, F. & Clarke, J. Superconducting quantum interference devices: State of the art and applications. Proc. IEEE 92, 1534–1548 (2004)

    Article  CAS  Google Scholar 

  4. Owston, C. N. A Hall effect magnetometer for small magnetic fields. J. Sci. Instrum. 44, 798–800 (1967)

    Article  ADS  Google Scholar 

  5. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotechnol. 2, 301–306 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Article  Google Scholar 

  8. Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys (in the press); preprint at 〈http://arXiv.org/abs/0805.1367v1〉 (2008)

  9. Budker, D. F., Kimball, D. F. & DeMille, D. P. Atomic Physics: An Exploration Through Problems and Solutions (Oxford Univ. Press, 2004)

    Google Scholar 

  10. Ludlow, A. D. et al. Sr lattice clock at 1 × 10–16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992)

    Article  CAS  Google Scholar 

  13. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Jiang, L. et al. Coherence of an optically illuminated single nuclear spin qubit. Phys. Rev. Lett. 100, 073001 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Preprint at 〈http://arXiv.org/abs/0805.0327〉 (2008)

  22. Rabeau, J. R. et al. Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 7, 3433–3437 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006)

    Article  ADS  Google Scholar 

  24. Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 10.1038/nature07278 (this issue)

  27. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Preprint at 〈http://arXiv.org/abs/0805.1215v2〉 (2008)

  28. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Treutlein, P., Hunger, D., Camerer, S., Hansch, T. W. & Reichel, J. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 99, 140403 (2007)

    Article  ADS  Google Scholar 

  30. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Preprint at 〈http://arXiv.org/abs/0806.3606〉 (2008)

Download references

Acknowledgements

We acknowledge A. Akimov, D. Budker, F. Jelezko, F. Koppens, A. Trifonov, P. Hemmer and J. Wratchtrup for many discussions and experimental assistance. This work was supported by the NSF, DARPA, the Packard Foundation and Harvard CNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Lukin.

Supplementary information

Supplementary Information

The file contains Supplementary Figure 1 with Legend, Supplementary Discussion and additional references. This file provides a comparison between the magnetometer presented in this paper and other state-of-the-art magnetometers as well as a discussion on implementing NV magnetometers as single spin detectors. (PDF 210 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maze, J., Stanwix, P., Hodges, J. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). https://doi.org/10.1038/nature07279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07279

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing