Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetization vector manipulation by electric fields

Abstract

Conventional semiconductor devices use electric fields to control conductivity, a scalar quantity, for information processing. In magnetic materials, the direction of magnetization, a vector quantity, is of fundamental importance. In magnetic data storage, magnetization is manipulated with a current-generated magnetic field (Oersted–Ampère field), and spin current1,2 is being studied for use in non-volatile magnetic memories3,4. To make control of magnetization fully compatible with semiconductor devices, it is highly desirable to control magnetization using electric fields. Conventionally, this is achieved by means of magnetostriction produced by mechanically generated strain through the use of piezoelectricity5,6,7,8. Multiferroics9,10 have been widely studied in an alternative approach where ferroelectricity is combined with ferromagnetism. Magnetic-field control of electric polarization has been reported in these multiferroics using the magnetoelectric effect, but the inverse effect—direct electrical control of magnetization—has not so far been observed11. Here we show that the manipulation of magnetization can be achieved solely by electric fields in a ferromagnetic semiconductor, (Ga,Mn)As. The magnetic anisotropy, which determines the magnetization direction, depends on the charge carrier (hole) concentration in (Ga,Mn)As. By applying an electric field using a metal–insulator–semiconductor structure12,13,14, the hole concentration and, thereby, the magnetic anisotropy can be controlled, allowing manipulation of the magnetization direction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization vector manipulation by electric field, and measurement configuration.
Figure 2: Dependence of transverse resistance and magnetization angle on magnetic field angle.
Figure 3: Anisotropy fields, magnetization angle and sheet hole concentration as functions of electric field.
Figure 4: Electric-field-dependent perpendicular uniaxial hard-axis anisotropy.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1–7 (1996)

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Hosomi, M. et al. A novel nonvolatile memory with spin torque transfer magnetization switching spin-RAM. IEDM Tech. Dig. 473, 459–462 (2005)

    Google Scholar 

  4. Kawahara, T. et al. in ISSCC 2007 (eds Amiri, M et al.) 480–481 (IEEE Internat. Solid-State Circuits Conf., IEEE, 2007)

    Google Scholar 

  5. Schröder, K. Design parameters of a 3-dimensional ultrasonic pulse controlled memory device with single domain coherently magnetized cobalt, iron and nickel particles in a non-magnetic matrix. IEEE Trans. Magn. 10, 567–570 (1974)

    Article  ADS  Google Scholar 

  6. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Goennenwein, S. T. B. et al. Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor. Phys. Status Solidi (RRL) 2, 96–98 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008)

    Article  ADS  Google Scholar 

  9. Tokura, Y. Multiferroics as quantum electromagnets. Science 312, 1481–1482 (2006)

    Article  CAS  Google Scholar 

  10. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006)

    Article  ADS  Google Scholar 

  15. Shen, A. et al. Epitaxy of (Ga,Mn)As, a new diluted magnetic semiconductor based on GaAs. J. Cryst. Growth 175–176, 1069–1074 (1997)

    Article  ADS  Google Scholar 

  16. Tang, H. X., Kawakami, R. K., Awschalom, D. D. & Roukes, M. L. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Welp, U., Vlasko-Vlasov, V. K., Liu, X., Furdyna, J. K. & Wojtowicz, T. Magnetic domain structure and magnetic anisotropy in Ga1-x Mn x As. Phys. Rev. Lett. 90, 167206 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Liu, X., Sasaki, Y. & Furdyna, J. K. Ferromagnetic resonance in Ga1-x Mn x As: Effects of magnetic anisotropy. Phys. Rev. B 67, 205204 (2003)

    Article  ADS  Google Scholar 

  19. Sawicki, M. et al. In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films. Phys. Rev. B 71, 121302 (2005)

    Article  ADS  Google Scholar 

  20. Wang, K.-Y. et al. Spin reorientation transition in single-domain (Ga,Mn)As. Phys. Rev. Lett. 95, 217204 (2005)

    Article  ADS  Google Scholar 

  21. Hamaya, K. et al. Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration. Phys. Rev. B 74, 045201 (2006)

    Article  ADS  Google Scholar 

  22. Pappert, K. et al. Transport characterization of the magnetic anisotropy of (Ga,Mn)As. Appl. Phys. Lett. 90, 062109 (2007)

    Article  ADS  Google Scholar 

  23. Oiwa, A., Mitsumori, Y., Moriya, R., Słupinski, T. & Munekata, H. Effect of optical spin injection on ferromagnetically coupled Mn spins in the III–V magnetic alloy semiconductor (Ga,Mn)As. Phys. Rev. Lett. 88, 137202 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Hashimoto, Y., Kobayashi, S. & Munekata, H. Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As. Phys. Rev. Lett. 100, 067202 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Hayashi, T. et al. Anisotropy and Barkhausen jumps in diluted magnetic semiconductor (Ga,Mn)As. Physica B 284–288, 1175–1176 (2000)

    Article  ADS  Google Scholar 

  26. Matsukura, F., Sawicki, M., Dietl, T., Chiba, D. & Ohno, H. Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E 21, 1032–1036 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, R2037–R2040 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blend magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Abolfath, M., Jungwirth, T., Brum, J. & MacDonald, A. H. Theory of magnetic anisotropy in III1-x Mn x V ferromagnets. Phys. Rev. B 63, 054418 (2001)

    Article  ADS  Google Scholar 

  30. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussion with M. Shirai. This work was supported in part by Grant-in-Aids from MEXT/JSPS, the GCOE Program at Tohoku University, the Research and Development for Next-Generation Information Technology Program (MEXT), and a Research Fellowship from JSPS.

Author Contributions D.C. and H.O. planned and supervised the study. D.C. grew the samples, made the devices, collected and analyzed data, and calculated magnetization switching. M.S. and F.M. investigated the magnetization characteristics of (Ga,Mn)As layers. Y. Nishitani investigated the transport characteristics of devices for the transport measurements and determined the dielectric constant of the ZrO2 gate insulators. Y. Nakatani performed the micromagnetic simulation. D.C., F.M. and H.O. wrote the manuscript. All authors discussed the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ohno.

Supplementary information

Supplementary Information

This file contains Supplementary Notes with Supplementary Figures S1-S3 (PDF 2152 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, D., Sawicki, M., Nishitani, Y. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008). https://doi.org/10.1038/nature07318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07318

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing