Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of microRNAs on protein output

Abstract

MicroRNAs are endogenous 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3′ untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The impact of transfected miRNAs on protein output.
Figure 2: The proteomic impact of deleting mir-223 in mouse neutrophils.
Figure 3: Correspondence between computational target predictions and observed protein changes.
Figure 4: Comparison of protein and mRNA changes accompanying miR-223 loss.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Array data and small RNA sequencing data were deposited in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE12075.

References

  1. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen, C. B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    ADS  CAS  PubMed  Google Scholar 

  10. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)

    Article  ADS  PubMed  Google Scholar 

  11. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Beitzinger, M., Peters, L., Zhu, J. Y., Kremmer, E. & Meister, G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 4, 76–84 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Easow, G., Teleman, A. A. & Cohen, S. M. Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karginov, F. V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl Acad. Sci. USA 104, 19291–19296 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vinther, J., Hedegaard, M. M., Gardner, P. P., Andersen, J. S. & Arctander, P. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 34, e107 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Kloosterman, W. P., Wienholds, E., Ketting, R. F. & Plasterk, R. H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32, 6284–6291 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans . Curr. Biol. 16, 460–471 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet. 39, 1278–1284 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Robins, H., Li, Y. & Padgett, R. W. Incorporating structure to predict microRNA targets. Proc. Natl Acad. Sci. USA 102, 4006–4009 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Long, D. et al. Potent effect of target structure on microRNA function. Nature Struct. Mol. Biol. 14, 287–294 (2007)

    Article  CAS  Google Scholar 

  32. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, V. Y., Zhang, Q. Y. & Weiss, S. J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc. Natl Acad. Sci. USA 92, 3849–3853 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Menzel, K. et al. Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo . Clin. Exp. Immunol. 146, 169–180 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu, Y. K., Arkins, S., Wang, B. S. & Kelley, K. W. A novel role of growth hormone and insulin-like growth factor-I. Priming neutrophils for superoxide anion secretion. J. Immunol. 146, 1602–1608 (1991)

    CAS  PubMed  Google Scholar 

  36. Bjerknes, R. & Aarskog, D. Priming of human polymorphonuclear neutrophilic leukocytes by insulin-like growth factor I: increased phagocytic capacity, complement receptor expression, degranulation, and oxidative burst. J. Clin. Endocrinol. Metab. 80, 1948–1955 (1995)

    CAS  PubMed  Google Scholar 

  37. Everley, P. A. et al. Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation. J. Proteome Res. 5, 1224–1231 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kersey, P. J. et al. The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. Pruitt, K. D., Katz, K. S., Sicotte, H. & Maglott, D. R. Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. Trends Genet. 16, 44–47 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. Imanishi, T. et al. Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol. 2, e162 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baek, D., Davis, C., Ewing, B., Gordon, D. & Green, P. Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res. 17, 145–155 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002)

    Article  ADS  PubMed  Google Scholar 

  45. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans . Cell 127, 1193–1207 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. Pall, G. S., Codony-Servat, C., Byrne, J., Ritchie, L. & Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35, e60 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.-J. Hong, T. Brummelkamp and S. Stehling-Sun for discussions, C. Bakalarski for writing and implementing the Vista algorithm for automated protein quantification, W. Johnston for technical assistance, and P. Wisniewski for cell sorting. This was supported by a Damon Runyon postdoctoral fellowship (C.S.) and grants from the NIH (D.P.B and S.P.G). D.P.B. is an investigator of the Howard Hughes Medical Institute.

Author Contributions The order of listing of the first three authors is arbitrary. C.S. and F.C. performed the experimental work with cells and animals. J.V. performed the mass spectrometry and associated computational analysis. D.B. performed the computational analysis of targeting. All authors contributed to the design of the study and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven P. Gygi or David P. Bartel.

Supplementary information

Supplementary Information 1

The file contains Supplementary Discussion; Supplementary Tables 1-2; Supplementary Figures 1-8 with Legends. Supplementary Discussion discusses potential caveats of ectopically introduced miRNAs in investigating miRNA targeting and corresponding advantages of examining miRNA-deficient cells. Supplementary Table 1 lists 3'UTR motifs overrepresented in messages of proteins most upregulated in miR-223-/Y neutrophils. Supplementary Table 2 lists the top 20 miRNAs co-expressed with miR-223 in wild-type neutrophils cultured in vitro. Supplementary Figure 1 shows the schematic of our quantitative proteomics approach using SILAC in experiments transfecting miR-1, 124, and 181 into HeLa cells.Supplementary Figure 2 illustrates the quantification of peptides from two proteins that respond the loss of miR-223 and two proteins that do not. Supplementary Figure 3 illustrates the reproducibility of the quantification when comparing technical replicates and when comparing different peptides representing the same protein. Supplementary Figure 4 shows additional characterization of the neutrophils differentiated in vitro. Supplementary Figure 5 shows the response of proteins predicted to be miR-223 targets after deleting miR-223. Supplementary Figure 6 illustrates the protein and mRNA changes for the additional cohorts of genes lacking 3'UTR sites. Supplementary Figure 7 shows comparative immunoblots illustrating the consequences of losing miR-223 in neutrophils differentiated in vitro and those isolated from the mouse. Supplementary Figure 8 shows the protein repression of genes predicted to be miR-124, miR-1, and miR-181 targets from experiments transfecting those miRNAs into HeLa cells. (PDF 9035 kb)

nature07242-s2.xls

This file contains Supplementary Data 1. This Excel file lists the number of uniquely quantified peptides, the number of independent measurements, the median log2-fold-change in quantified protein (with 25th and 75th percentiles), and the log2-fold-change in mRNA (with error) for each human message in our dataset after transfecting miR-124. Also listed is the number of miR-124 sites in the UTRs and ORF of each message. (XLS 4712 kb)

nature07242-s3.xls

This file contains Supplementary Data 2. This Excel file lists the number of uniquely quantified peptides, the number of independent measurements, the median log2-fold-change in quantified protein (with 25th and 75th percentiles), and the log2-fold-change in mRNA (with error) for each human message in our dataset after transfecting miR-1. Also listed is the number of miR-1 sites in the UTRs and ORF of each message. (XLS 4717 kb)

nature07242-s4.xls

This file contains Supplementary Data 3. This Excel file lists the number of uniquely quantified peptides, the number of independent measurements, the median log2-fold-change in quantified protein (with 25th and 75th percentiles), and the log2-fold-change in mRNA (with error) for each human message in our dataset after transfecting miR-181. Also listed is the number of miR-181 sites in the UTRs and ORF of each message. (XLS 4712 kb)

nature07242-s5.xls

This file contains Supplementary Data 4. This Excel file lists the number of uniquely quantified peptides, the number of independent measurements, the median log2-fold-change in quantified protein (with 25th and 75th percentiles), and the mean log2-fold-change in mRNA (with s.e.m.) for each mouse message in our dataset, comparing neutrophils with and without miR-223. Also reported are the profiling data for sorted progenitors and sorted neutrophils, and the number of miR-223 sites in the UTRs and ORF of each message. (XLS 5882 kb)

nature07242-s6.zip

This file contains Supplementary Data 5a. This fasta file lists the complete 5' UTR, ORF, and 3' UTR sequences of our human reference cDNAs. (ZIP 18837 kb)

nature07242-s7.zip

This file contains Supplementary Data 5b. This fasta file lists the complete 5' UTR, ORF, and 3' UTR sequences of our mouse reference cDNAs. (ZIP 18057 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008). https://doi.org/10.1038/nature07242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07242

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing