Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amplitude spectroscopy of a solid-state artificial atom

Abstract

The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system’s response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting ‘spectroscopy diamonds’, the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom’s spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplitude spectroscopy with long-pulse driving towards saturation.
Figure 2: Energy-level slopes and interference patterns.
Figure 3: Amplitude spectroscopy with short-pulse driving.
Figure 4: Identification of transverse qubit states.

Similar content being viewed by others

References

  1. Schawlow, A. L. Spectroscopy in a new light. Rev. Mod. Phys. 54, 697–707 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Thompson, R. C. High resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531–578 (1985)

    Article  ADS  CAS  Google Scholar 

  3. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)

    Article  ADS  CAS  Google Scholar 

  4. van der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Berkley, A. J. et al. Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Izmalkov, A. et al. Evidence for entangled states of two coupled flux quibits. Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  CAS  Google Scholar 

  7. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Clarke, J., Cleland, A. N., Devoret, M. H., Esteve, D. & Martinis, J. H. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Yu, Y., Han, S., Chu, X., Chu, S.-I. & Wang, Z. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Martinis, J. M., Nam, S. & Aumentado, J. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  14. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Collin, R. E. Foundations for Microwave Engineering (Wiley-IEEE, 2001)

    Book  Google Scholar 

  16. Friedman, J. R. et al. Macroscopic measurement of resonant magnetization tunnelling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications Ch. 6 (Wiley, 1992)

    Google Scholar 

  20. Nakamura, H. Nonadiabatic Transition Ch. 1 2 (World Scientific, 2001)

    Google Scholar 

  21. Stückelberg, E. C. G. Theory of inelastic collisions between atoms. Helv. Phys. Acta 5, 369–422 (1932)

    Google Scholar 

  22. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Rabi oscillations in a large Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Claudon, J., Balestro, F., Hekking, J. W. J. & Buisson, O. Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187003 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Plourde, B. L. T. et al. Flux qubits and readout device with two independent flux lines. Phys. Rev. B 72, 060506(R) (2005)

    Article  ADS  Google Scholar 

  25. Saito, S. et al. Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96, 107001 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Izmalkov, A. et al. Observation of macroscopic Landau-Zener transitions in a superconducting device. Eur. Phys. Rev. Lett. 65, 844–849 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Oliver, W. D. et al. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2003)

    Article  ADS  Google Scholar 

  28. Sillanpää, M., Lehtinen, T., Paila, A., Makhlin & Hakonen, P. Continuous-time monitoring of Landau-Zener interference in a Cooper-pair box. Phys. Rev. Lett. 96, 187002 (2006)

    Article  ADS  Google Scholar 

  29. Berns, D. M. et al. Coherent quasiclassical dynamics of a persistent current qubit. Phys. Rev. Lett. 97, 150502 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Wilson, C. M. et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Niskanen, A. O., Nakamura, Y. & Pekola, J. P. Information entropic superconducting microcooler. Phys. Rev. B 76, 174523 (2007)

    Article  ADS  Google Scholar 

  33. You, J. Q., Liu, Y. & Nori, F. Simultaneous cooling of an artificial atom and its neighboring quantum system. Phys. Rev. Lett. 100, 047001 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)

    Article  ADS  CAS  Google Scholar 

  35. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  CAS  Google Scholar 

  36. Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)

    Article  ADS  CAS  Google Scholar 

  37. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)

    Article  ADS  Google Scholar 

  38. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    Article  ADS  CAS  Google Scholar 

  39. Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Katz, N. et al. Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)

    Article  ADS  CAS  Google Scholar 

  41. Lupaşcu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007)

    Article  ADS  Google Scholar 

  42. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999)

    Article  CAS  Google Scholar 

  43. Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999)

    Article  ADS  CAS  Google Scholar 

  44. Mark, M. et al. “Stueckelberg interferometry” with ultracold molecules. Phys. Rev. Lett. 99, 113201 (2007)

    Article  ADS  CAS  Google Scholar 

  45. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007)

    Article  ADS  CAS  Google Scholar 

  46. Rudner, M. S. et al. Quantum phase tomography of a strongly driven qubit. Preprint at 〈http://arxiv.org/abs/0805.1555〉 (2008)

  47. Ashab, S., Johansson, J. R., Zagoskin, A. M. & Nori, F. Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  48. Wubs, M. et al. Gauging a quantum heat bath with dissipative Landau-Zener transitions. Phys. Rev. Lett. 97, 200404 (2006)

    Article  ADS  Google Scholar 

  49. Mark, M. et al. Spectroscopy of ultracold trapped caesium Feshbach molecules. Phys. Rev. A 76, 042514 (2007)

    Article  ADS  Google Scholar 

  50. Lang, F. et al. Cruising through molecular bound-state manifolds with radiofrequency. Nature Phys. 4, 223–226 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Shytov, J. Bylander, B. Turek, A. J. Kerman and J. Sage for discussions and D. Baker, V. Bolkhovsky, G. Fitch, E. Macedo, P. Murphy, K. Parrillo, R. Slattery and T. Weir at Lincoln Laboratory, MIT, for technical assistance. This work was supported by the Air Force Office of Scientific Research and the Laboratory for Physical Sciences (F49620-01-1-0457) under the Defense University Research Initiative in Nanotechnology programme, and by the US government. The work at Lincoln Laboratory was sponsored by the US Department of Defence under Air Force Contract No. FA8721-05-C-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Oliver.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Figures 1-8 with legends, and Supplementary References. (PDF 3373 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berns, D., Rudner, M., Valenzuela, S. et al. Amplitude spectroscopy of a solid-state artificial atom. Nature 455, 51–57 (2008). https://doi.org/10.1038/nature07262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07262

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing