Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B

Abstract

Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins1,2. The Epac proteins are involved in the regulation of cell adhesion3 and insulin secretion4. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active Epac 2.
Figure 2: Sp-cAMPS induced conformational changes.
Figure 3: Interactions between Epac2 and RAP1B.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Co-ordinates have been deposited with the Protein Data Bank under accession number 3cf6. The EM map of activated full length Epac2 bound to RAP1B has been deposited in the 3D EM database (http://www.ebi.ac.uk/msd/) under accession code EMD-1510.

References

  1. de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Bos, J. L. Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 17, 123–128 (2005)

    Article  CAS  Google Scholar 

  4. Seino, S. & Shibasaki, T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol. Rev. 85, 1303–1342 (2005)

    Article  CAS  Google Scholar 

  5. Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A. & Bos, J. L. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439, 625–628 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Rehmann, H., Schwede, F., Døskeland, S. O., Wittinghofer, A. & Bos, J. L. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J. Biol. Chem. 278, 38548–38556 (2003)

    Article  CAS  Google Scholar 

  7. Canaves, J. M. & Taylor, S. S. Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family. J. Mol. Evol. 54, 17–19 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Yagura, T. S. & Miller, J. P. Mapping adenosine cyclic 3′,5′-phosphate binding sites on type I and type II adenosine cyclic 3′,5′-phosphate dependent protein kinases using ribose ring and cyclic phosphate ring analogues of adenosine cyclic 3′,5′-phosphate. Biochemistry (Mosc.) 20, 879–887 (1981)

    Article  CAS  Google Scholar 

  9. Su, Y. et al. Regulatory subunit of protein kinase A: Structure of deletion mutant with cAMP binding domains. Science 269, 807–813 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Diller, T. C., Madhusudan, N. H. & Taylor, S. S. Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: Crystal structure of the type II beta regulatory subunit. Structure (Camb.) 9, 73–82 (2001)

    Article  CAS  Google Scholar 

  11. Clayton, G. M., Silverman, W. R., Heginbotham, L. & Morais-Cabral, J. H. Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell 119, 615–627 (2004)

    Article  CAS  Google Scholar 

  12. Zagotta, W. N. et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Rehmann, H., Wittinghofer, A. & Bos, J. L. Capturing cyclic nucleotides in action: Snapshots from crystallographic studies. Nature Rev. Mol. Cell Biol. 8, 63–73 (2007)

    Article  CAS  Google Scholar 

  14. Margarit, S. M. et al. Structural evidence for feedback activation by RaS˙GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003)

    Article  CAS  Google Scholar 

  15. Freedman, T. S. et al. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl Acad. Sci. USA 103, 16692–16697 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Rehmann, H. Characterization of the activation of the Rap-specific exchange factor Epac by cyclic nucleotides. Methods Enzymol. 407, 159–173 (2006)

    Article  CAS  Google Scholar 

  18. Herrmann, C., Horn, G., Spaargaren, M. & Wittinghofer, A. Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794–6800 (1996)

    Article  CAS  Google Scholar 

  19. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  20. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D 56, 1622–1624 (2000)

    Article  CAS  Google Scholar 

  21. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  22. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  23. Kraulis, P. J. Molscript — a program to produced both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  24. Schomburg, D. & Reichelt, J. Bragi — a comprehensive protein modeling program system. J. Mol. Graphics 6, 161–165 (1988)

    Article  CAS  Google Scholar 

  25. Merritt, E. A. & Murphy, M. E. P. Rasert3D version 2.0 — A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994)

    Article  CAS  Google Scholar 

  26. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  27. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  Google Scholar 

  28. Heymann, J. B. & Belnap, D. M. Bsoft: Image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007)

    Article  CAS  Google Scholar 

  29. Scheres, S. H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 27–29 (2007)

    Article  CAS  Google Scholar 

  30. Scheres, S. H. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005)

    Article  CAS  Google Scholar 

  31. Sorzano, C. O. et al. XMIPP: A new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004)

    Article  CAS  Google Scholar 

  32. Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  33. Wriggers, W., Milligan, R. A. & McCammon, J. A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999)

    Article  CAS  Google Scholar 

  34. Garzon, J. I., Kovacs, J., Abagyan, R. & Chacon, P. ADP_EM: Fast exhaustive multi-resolution docking for high-throughput coverage. Bioinformatics 23, 427–433 (2007)

    Article  CAS  Google Scholar 

  35. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Gros for access to crystallization robots, M. Rensen-De Leeuw for technical assistance, A. Wittinghofer for reading the manuscript, the European Synchrotron Radiation Facility for providing synchrotron facilities, the scientists at ID23-1 for help with data collection, and the Galicia Supercomputer Centre (CESGA) and the Barcelona Supercomputing Centre for computing resources. H.R. is a recipient of the Hendrik Casimir-Karl Ziegler-Forschungspreis of the Nordrhein-Westfälischen Akademie der Wissenschaften and the Koninklijke Nederlandse Akademie van Wetenschappen. E.A.-P. and O.L. are supported by the Autonomous Region of Madrid, F.S. by the Bremer Innovationsagentur, O.L. by the Spanish Ministry of Education and Science (MEC) and the Red Temática de Investigación cooperativa en Cáncer (RTICC), and J.L.B. by the Chemical Sciences and the Netherlands Genomic Initiative of the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Rehmann.

Supplementary information

Supplementary Information 1

This file contains Supplementary Table 1 describing the data collections and refinement statistics, a legend to Supplementary Movie describing the content of the movie in detail and Supplementary Figures S1 to S9 showing detail aspect of the EM and the crystal structures as well as a biochemical data. (PDF 5084 kb)

Supplementary Information 2

This file contains Supplementary Movie 1. This movie illustrates in cartoon style how cAMP induces the activation of Epac. The conformational changes within the CNB domain are shown left and the resulting structural consequences for the domain organisation of Epac right. A detailed description can be found in the Supplementary Information file. (MOV 2324 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehmann, H., Arias-Palomo, E., Hadders, M. et al. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455, 124–127 (2008). https://doi.org/10.1038/nature07187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07187

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing