Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus

Abstract

The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health1. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs2. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding3,4; PA is implicated in RNA replication5,6,7,8,9,10 and proteolytic activity11,12,13,14, although its function is less clearly defined. Here we report the 2.9 ångström structure of avian H5N1 influenza A virus PA (PAC, residues 257–716) in complex with the PA-binding region of PB1 (PB1N, residues 1–25). PAC has a fold resembling a dragon’s head with PB1N clamped into its open ‘jaws’. PB1N is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1N to PAC at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PAC with the λ3 reovirus polymerase structure, and docking the PAC structure into an available low resolution electron microscopy map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PA C –PB1 N complex structure.
Figure 2: Representations of the PA C groove and channel.
Figure 3: Model of the influenza polymerase heterotrimer.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structure have been deposited in the Protein Data Bank under accession number 3CM8.

References

  1. Taubenberger, J. K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Ghanem, A. et al. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81, 7801–7804 (2007)

    Article  CAS  Google Scholar 

  3. Li, M. L., Rao, P. & Krug, R. M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 20, 2078–2086 (2001)

    Article  CAS  Google Scholar 

  4. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Struct. Biol. 15, 500–506 (2008)

    Article  CAS  Google Scholar 

  5. Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002)

    Article  CAS  Google Scholar 

  6. Jung, T. E. & Brownlee, G. G. A new promoter-binding site in the PB1 subunit of the influenza A virus polymerase. J. Gen. Virol. 87, 679–688 (2006)

    Article  CAS  Google Scholar 

  7. Kawaguchi, A., Naito, T. & Nagata, K. Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J. Virol. 79, 732–744 (2005)

    Article  CAS  Google Scholar 

  8. Huarte, M. et al. Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J. Virol. 77, 6007–6013 (2003)

    Article  CAS  Google Scholar 

  9. Fodor, E., Mingay, L. J., Crow, M., Deng, T. & Brownlee, G. G. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase promotes the generation of defective interfering RNAs. J. Virol. 77, 5017–5020 (2003)

    Article  CAS  Google Scholar 

  10. Sugiura, A., Ueda, M., Tobita, K. & Enomoto, C. Further isolation and characterization of temperature-sensitive mutants of influenza virus. Virology 65, 363–373 (1975)

    Article  CAS  Google Scholar 

  11. Zurcher, T., de la Luna, S., Sanz-Ezquerro, J. J., Nieto, A. & Ortin, J. Mutational analysis of the influenza virus A/Victoria/3/75 PA protein: studies of interaction with PB1 protein and identification of a dominant negative mutant. J. Gen. Virol. 77, 1745–1749 (1996)

    Article  CAS  Google Scholar 

  12. Hara, K. et al. Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 6, 87–97 (2001)

    Article  CAS  Google Scholar 

  13. Rodriguez, A., Perez-Gonzalez, A. & Nieto, A. Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J. Virol. 81, 5315–5324 (2007)

    Article  CAS  Google Scholar 

  14. Sanz-Ezquerro, J. J., Zurcher, T., de la Luna, S., Ortin, J. & Nieto, A. The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J. Virol. 70, 1905–1911 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006)

    Article  CAS  Google Scholar 

  16. Regan, J. F., Liang, Y. & Parslow, T. G. Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J. Virol. 80, 252–261 (2006)

    Article  CAS  Google Scholar 

  17. Toyoda, T., Adyshev, D. M., Kobayashi, M., Iwata, A. & Ishihama, A. Molecular assembly of the influenza virus RNA polymerase: determination of the subunit–subunit contact sites. J. Gen. Virol. 77, 2149–2157 (1996)

    Article  CAS  Google Scholar 

  18. Ohtsu, Y., Honda, Y., Sakata, Y., Kato, H. & Toyoda, T. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol. Immunol. 46, 167–175 (2002)

    Article  CAS  Google Scholar 

  19. Perez, D. R. & Donis, R. O. Functional analysis of PA binding by influenza a virus PB1: effects on polymerase activity and viral infectivity. J. Virol. 75, 8127–8136 (2001)

    Article  CAS  Google Scholar 

  20. Gonzalez, S., Zurcher, T. & Ortin, J. Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res. 24, 4456–4463 (1996)

    Article  CAS  Google Scholar 

  21. Gabriel, G. et al. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J. Virol. 81, 9601–9604 (2007)

    Article  CAS  Google Scholar 

  22. Tao, Y., Farsetta, D. L., Nibert, M. L. & Harrison, S. C. RNA synthesis in a cage–structural studies of reovirus polymerase λ3. Cell 111, 733–745 (2002)

    Article  CAS  Google Scholar 

  23. Area, E. et al. 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc. Natl Acad. Sci. USA 101, 308–313 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Torreira, E. et al. Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res. 35, 3774–3783 (2007)

    Article  CAS  Google Scholar 

  25. Deng, T., Vreede, F. T. & Brownlee, G. G. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80, 2337–2348 (2006)

    Article  CAS  Google Scholar 

  26. Maier, H. J., Kashiwagi, T., Hara, K. & Brownlee, G. G. Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology 370, 194–204 (2008)

    Article  CAS  Google Scholar 

  27. Gonzalez, S. & Ortin, J. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. EMBO J. 18, 3767–3775 (1999)

    Article  CAS  Google Scholar 

  28. de la Luna, S., Martinez, C. & Ortin, J. Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Res. 13, 143–155 (1989)

    Article  CAS  Google Scholar 

  29. Tarendeau, F. et al. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Struct. Biol. 14, 229–233 (2007)

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. in Macromolecular Crystallography, part A (eds Carter C. W. Jr & Sweet, R. M.) 307–326 (Academic, New York, 1997)

    Book  Google Scholar 

  31. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  ADS  CAS  Google Scholar 

  32. Sheldrick, G. M. Direct Methods for Solving Macromolecular Structures (ed. Fortier, S.) 401–411 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998)

    Book  Google Scholar 

  33. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007)

    CAS  Google Scholar 

  34. Cowtan, K. D. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)

    Article  CAS  Google Scholar 

  35. Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  36. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  37. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  39. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Chen and K. Yu for providing the A/goose/Guangdong/1/96 influenza PA gene; J. Ortin and O. Llorca for supplying electron microscopy maps; C. Yang, X. Su, F. Sun, L. Wang and R.-M. Xu for advice and technical assistance; and S. Harrison, P. Kuhn, X. Chen and T. Toyoda for discussion. This work was supported by the National Natural Science Foundation of China (grant numbers 30599432 and 30221003), the Ministry of Science and Technology International Cooperation Project (grant number 2006DFB32420), the Ministry of Science and Technology 863 Project (grant numbers 2006AA02A314 and 2006AA02A322) and the Ministry of Science and Technology 973 Project (grant numbers 2006CB504300 and 2007CB914300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zihe Rao or Yingfang Liu.

Supplementary information

The file contains Supplementary Figures and Legends S1-S5; Supplementary Tables T1 and T2.

The Supplementary Figures show a multiple sequence alignment for PAC and PB1N (S1), representative electron density (S2) and known mutation sites for the PAC structure (S3), together with in vitro binding assays for PB1N to several double-point mutants of PAC (S4) and a superposition between structures of PAC and λ3 reovirus polymerase N-terminal domain (S5). The Supplementary Table T1 includes data collection, phasing and refinement statistics for PAC:PB1N. The Supplementary Table T2 includes a prediction of the effects of several known mutations in PAC. (PDF 670 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Zhou, J., Bartlam, M. et al. Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus. Nature 454, 1123–1126 (2008). https://doi.org/10.1038/nature07120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing