Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Puzzles, promises and a cure for ageing

Abstract

Recent discoveries in the science of ageing indicate that lifespan in model organisms such as yeast, nematodes, flies and mice is plastic and can be manipulated by genetic, nutritional or pharmacological intervention. A better understanding of the targets of such interventions, as well as the proximate causes of ageing-related degeneration and disease, is essential before we can evaluate if abrogation of human senescence is a realistic prospect.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potentially conserved pro-ageing pathways, their interconnections and possible targets for intervention.
Figure 2: Balancing somatic maintenance with growth and reproduction may determine lifespan.
Figure 3: The causes of intrinsic ageing.

Similar content being viewed by others

References

  1. Kinsella, K. G. Future longevity-demographic concerns and consequences. J. Am. Geriatr. Soc. 53, S299–S303 (2005)

    Article  Google Scholar 

  2. Olshansky, S. J., Carnes, B. A. & Cassel, C. In search of Methuselah: estimating the upper limits to human longevity. Science 250, 634–640 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Klass, M. R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech. Ageing Dev. 22, 279–286 (1983)

    Article  CAS  Google Scholar 

  4. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005)

    Article  CAS  Google Scholar 

  6. Masoro, E. J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913–922 (2005)

    Article  CAS  Google Scholar 

  7. Gems, D., Pletcher, S. & Partridge, L. Interpreting interactions between treatments that slow aging. Aging Cell 1, 1–9 (2002)

    Article  CAS  Google Scholar 

  8. Ingram, D. K. et al. Calorie restriction mimetics: an emerging research field. Aging Cell 5, 97–108 (2006)

    Article  CAS  Google Scholar 

  9. Chen, D. & Guarente, L. SIR2: a potential target for calorie restriction mimetics. Trends Mol. Med. 13, 64–71 (2007)

    Article  CAS  Google Scholar 

  10. Miller, R. A. et al. An aging interventions testing program: study design and interim report. Aging Cell 6, 565–575 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Botstein, D., Chervitz, S. A. & Cherry, J. M. Yeast as a model organism. Science 277, 1259–1260 (1997)

    Article  CAS  Google Scholar 

  12. Santini, M. P. et al. Enhancing repair of the mammalian heart. Circ. Res. 100, 1732–1740 (2007)

    Article  CAS  Google Scholar 

  13. Pelosi, L. et al. Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 21, 1393–1402 (2007)

    Article  CAS  Google Scholar 

  14. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003)

    Article  ADS  Google Scholar 

  15. Selman, C. et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008)

    Article  CAS  Google Scholar 

  16. Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Giannakou, M. E. & Partridge, L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 14, 408–412 (2004)

    Article  CAS  Google Scholar 

  18. Smith, J. Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol. 12, 404–406 (2002)

    Article  CAS  Google Scholar 

  19. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007)

    Article  CAS  Google Scholar 

  20. Ayyadevara, S., Alla, R., Thaden, J. J. & Shmookler Reis, R. J. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7, 13–22 (2007)

    Article  Google Scholar 

  21. Broughton, S. J. et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl Acad. Sci. USA 102, 3105–3110 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005)

    Article  CAS  Google Scholar 

  23. Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. & Partridge, L. Dietary restriction in long-lived dwarf flies. Science 296, 319 (2002)

    Article  CAS  Google Scholar 

  24. Spencer, C. C., Howell, C. E., Wright, A. R. & Promislow, D. E. Testing an ‘aging gene’ in long-lived Drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2, 123–130 (2003)

    Article  CAS  Google Scholar 

  25. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003)

    Article  CAS  Google Scholar 

  26. Perls, T. et al. Survival of parents and siblings of supercentenarians. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1028–1034 (2007)

    Article  Google Scholar 

  27. Beekman, M. et al. Chromosome 4q25, microsomal transfer protein gene, and human longevity: novel data and a meta-analysis of association studies. J. Gerontol. A Biol. Sci. Med. Sci. 61, 355–362 (2006)

    Article  Google Scholar 

  28. Barzilai, N. et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. J. Am. Med. Assoc. 290, 2030–2040 (2003)

    Article  CAS  Google Scholar 

  29. Kuningas, M. et al. Haplotypes in the human Foxo1a and Foxo3a genes; impact on disease and mortality at old age. Eur. J. Hum. Genet. 15, 294–301 (2007)

    Article  CAS  Google Scholar 

  30. Capri, M. et al. The genetics of human longevity. Ann. NY Acad. Sci. 1067, 252–263 (2006)

    Article  ADS  CAS  Google Scholar 

  31. Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Harper, J. M., Leathers, C. W. & Austad, S. N. Does caloric restriction extend life in wild mice? Aging Cell 5, 441–449 (2006)

    Article  CAS  Google Scholar 

  33. Mattison, J. A., Lane, M. A., Roth, G. S. & Ingram, D. K. Calorie restriction in rhesus monkeys. Exp. Gerontol. 38, 35–46 (2003)

    Article  Google Scholar 

  34. Weindruch, R. Will dietary restriction work in primates? Biogerontology 7, 169–171 (2006)

    Article  Google Scholar 

  35. Dirks, A. J. & Leeuwenburgh, C. Caloric restriction in humans: potential pitfalls and health concerns. Mech. Ageing Dev. 127, 1–7 (2006)

    Article  Google Scholar 

  36. Yang, J., Anzo, M. & Cohen, P. Control of aging and longevity by IGF-I signaling. Exp. Gerontol. 40, 867–872 (2005)

    Article  CAS  Google Scholar 

  37. Kapahi, P., Boulton, M. E. & Kirkwood, T. B. Positive correlation between mammalian lifespan and cellular resistance to stress. Free Radic. Biol. Med. 26, 495–500 (1999)

    Article  CAS  Google Scholar 

  38. Accuracy of Molecular Processes. (eds Kirkwood, T. B., Rosenberger, R. F., Galas, D. J.) (Chapman & Hall, 1986)

  39. Suckling, K. The continuing complexities of high-density lipoprotein metabolism in drug discovery and development. Expert Opin. Ther. Targets 11, 1133–1136 (2007)

    Article  CAS  Google Scholar 

  40. Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35, 125–129 (1973)

    Article  Google Scholar 

  41. Medawar, P. B. An Unsolved Problem in Biology (H. K. Lewis, 1952)

    Google Scholar 

  42. Kirkwood, T. B. A systematic look at an old problem. Nature 451, 644–647 (2008)

    Article  ADS  CAS  Google Scholar 

  43. Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004)

    Article  ADS  CAS  Google Scholar 

  44. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005)

    Article  CAS  Google Scholar 

  45. Jenkins, N. L., McColl, G. & Lithgow, G. J. Fitness cost of extended lifespan in Caenorhabditis elegans . Proc. Biol. Sci. 271, 2523–2526 (2004)

    Article  Google Scholar 

  46. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001)

    Article  ADS  CAS  Google Scholar 

  47. Harding, C., Pompei, F., Lee, E. E. & Wilson, R. Cancer suppression at old age. Cancer Res. 68, 4465–4478 (2008)

    Article  CAS  Google Scholar 

  48. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans . Nature 419, 808–814 (2002)

    Article  ADS  CAS  Google Scholar 

  49. Wang, C. et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci. 27, 8563–8570 (2007)

    Article  CAS  Google Scholar 

  50. Grotewiel, M. S., Martin, I., Bhandari, P. & Cook-Wiens, E. Functional senescence in Drosophila melanogaster . Ageing Res. Rev. 4, 372–397 (2005)

    Article  CAS  Google Scholar 

  51. Bruder, C. E. et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet. 82, 763–771 (2008)

    Article  CAS  Google Scholar 

  52. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005)

    Article  ADS  CAS  Google Scholar 

  53. Vaupel, J. W. et al. Biodemographic trajectories of longevity. Science 280, 855–860 (1998)

    Article  CAS  Google Scholar 

  54. Muller, F. L., Lustgarten, M. S., Jang, Y., Richardson, A. & Van Remmen, H. Trends in oxidative aging theories. Free Radic. Biol. Med. 43, 477–503 (2007)

    Article  CAS  Google Scholar 

  55. Ulrich, P. & Cerami, A. Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21 (2001)

    Article  CAS  Google Scholar 

  56. de Grey, A. D. et al. Time to talk SENS: critiquing the immutability of human aging. Ann. NY Acad. Sci. 959, 452–62 (2002)

    Article  ADS  CAS  Google Scholar 

  57. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003)

    Article  CAS  Google Scholar 

  58. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007)

    Article  CAS  Google Scholar 

  59. Bahar, R. et al. Increased cell-to-cell variation in gene expression in aging mouse heart. Nature 441, 1011–1014 (2006)

    Article  ADS  CAS  Google Scholar 

  60. Vijg, J. Aging of the Genome (Oxford Univ. Press, 2007)

    Book  Google Scholar 

  61. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Article  ADS  CAS  Google Scholar 

  62. DiMauro, S. & Schon, E. A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348, 2656–2668 (2003)

    Article  CAS  Google Scholar 

  63. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977)

    Article  ADS  CAS  Google Scholar 

  64. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)

    Article  ADS  CAS  Google Scholar 

  65. McCarty, M. F. Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med. Hypotheses 63, 334–339 (2004)

    Article  CAS  Google Scholar 

  66. Meydani, M. et al. The effect of long-term dietary supplementation with antioxidants. Ann. NY Acad. Sci. 854, 352–360 (1998)

    Article  ADS  CAS  Google Scholar 

  67. Frei, B. Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J. Nutr. 134, 3196S–3198S (2004)

    Article  CAS  Google Scholar 

  68. Melov, S. et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567–1569 (2000)

    Article  ADS  CAS  Google Scholar 

  69. Keaney, M. & Gems, D. No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic. Biol. Med. 34, 277–282 (2003)

    Article  CAS  Google Scholar 

  70. Morten, K. J., Ackrell, B. A. & Melov, S. Mitochondrial reactive oxygen species in mice lacking superoxide dismutase 2: attenuation via antioxidant treatment. J. Biol. Chem. 281, 3354–3359 (2006)

    Article  CAS  Google Scholar 

  71. Floyd, R. A. Nitrones as therapeutics in age-related diseases. Aging Cell 5, 51–57 (2006)

    Article  CAS  Google Scholar 

  72. Furber, J. D. Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res. 9, 274–278 (2006)

    Article  CAS  Google Scholar 

  73. Vaitkevicius, P. V. et al. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc. Natl Acad. Sci. USA 98, 1171–1175 (2001)

    Article  ADS  CAS  Google Scholar 

  74. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006)

    Article  ADS  CAS  Google Scholar 

  75. Calder, R. B. et al. MPHASYS: a mouse phenotype analysis system. BMC Bioinformatics 8, 183 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Barzilai, A. de Grey, G. Lithgow and M. Gough for comments on the manuscript and P. Kapahi, R. Shmookler Reis, L. Balducci and Y. Suh for discussions. The authors’ work is supported by the US National Institutes of Health and Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Vijg or Judith Campisi.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijg, J., Campisi, J. Puzzles, promises and a cure for ageing. Nature 454, 1065–1071 (2008). https://doi.org/10.1038/nature07216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07216

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing