Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of a BDCZ quantum repeater node

Abstract

Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication1,2,3,4 (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails5 when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters6, combining entanglement swapping7 and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated8, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme9,10 that incorporates the strategy of BDCZ with atomic quantum memories11. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental scheme for entanglement swapping.
Figure 2: Correlation functions of a CHSH-type Bell’s inequality with a storage time δ t s = 500 ns.
Figure 3: Visibility of the atom–atom entanglement as a function of the storage time with 6-m fibre connection.
Figure 4: Polarization analysis of photons 1 and 4 when the connection channel is a 300-m fibre.

Similar content being viewed by others

References

  1. Peng, C.-Z. et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  2. Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  3. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  4. Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  6. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  8. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007)

    Article  ADS  Google Scholar 

  10. Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)

    Article  ADS  Google Scholar 

  11. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Chou, C.-W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1318 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007)

    Article  ADS  Google Scholar 

  16. Foreman, S. M. et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17 . Phys. Rev. Lett. 99, 153601 (2007)

    Article  ADS  Google Scholar 

  17. Yuan, Z.-S. et al. Synchronized independent narrow-band single photons and efficient generation of photonic entanglement. Phys. Rev. Lett. 98, 180503 (2007)

    Article  ADS  Google Scholar 

  18. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–72 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Chen, S. et al. A stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)

    Article  ADS  Google Scholar 

  22. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Harber, D. M., Lewandowski, H. J., McGuirk, J. M. & Cornell, E. A. Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas. Phys. Rev. A 66, 053616 (2002)

    Article  ADS  Google Scholar 

  25. Kuga, T. et al. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713–4716 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Simon, J., Tanji, H., Thompson, J. K. & Vuletić, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007)

    Article  ADS  Google Scholar 

  27. Sangouard, N. et al. Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Dür for discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Alexander von Humboldt Foundation, and the European Commission through the Marie Curie Excellence Grant and the ERC Grant. This work was also supported by the National Fundamental Research Program (grant 2006CB921900), the CAS and the NNSFC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ao Chen or Jian-Wei Pan.

Supplementary information

Supplementary Information

This file contains Supplementary Figures and Legends 1-3, Supplementary Methods, Supplementary Discussion, and Supplementary Notes. The Supplementary Methods and Discussion show that the quality of atom-photon entanglement, the method of phase stability, the estimation of the precision of local operations and how to realize long-distance quantum communication. (PDF 411 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, ZS., Chen, YA., Zhao, B. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008). https://doi.org/10.1038/nature07241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07241

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing