Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary origin and development of snake fangs

Abstract

Many advanced snakes use fangs—specialized teeth associated with a venom gland1,2—to introduce venom into prey or attacker. Various front- and rear-fanged groups are recognized, according to whether their fangs are positioned anterior (for example cobras and vipers) or posterior (for example grass snakes) in the upper jaw3,4,5. A fundamental controversy in snake evolution is whether or not front and rear fangs share the same evolutionary and developmental origin3,4,5,6,7,8,9. Resolving this controversy could identify a major evolutionary transition underlying the massive radiation of advanced snakes, and the associated developmental events. Here we examine this issue by visualizing the tooth-forming epithelium in the upper jaw of 96 snake embryos, covering eight species. We use the sonic hedgehog gene as a marker10,11,12,13, and three-dimensionally reconstruct the development in 41 of the embryos. We show that front fangs develop from the posterior end of the upper jaw, and are strikingly similar in morphogenesis to rear fangs. This is consistent with their being homologous. In front-fanged snakes, the anterior part of the upper jaw lacks sonic hedgehog expression, and ontogenetic allometry displaces the fang from its posterior developmental origin to its adult front position—consistent with an ancestral posterior position of the front fang. In rear-fanged snakes, the fangs develop from an independent posterior dental lamina and retain their posterior position. In light of our findings, we put forward a new model for the evolution of snake fangs: a posterior subregion of the tooth-forming epithelium became developmentally uncoupled from the remaining dentition, which allowed the posterior teeth to evolve independently and in close association with the venom gland, becoming highly modified in different lineages. This developmental event could have facilitated the massive radiation of advanced snakes in the Cenozoic era, resulting in the spectacular diversity of snakes seen today6,14,15.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adult maxillary dentition mapped onto a molecular snake phylogeny to show relative positions of the various fang types.
Figure 2: Shh expression in the embryonic snake palate, showing the posterior developmental origins of front fangs.
Figure 3: Sections of the shh in situ hybridizations of the embryonic upper jaw in five snake species, showing the posterior and anterior dental laminae.
Figure 4: Schematic three-dimensional reconstructions showing the similarity in morphogenesis between the rear and front fangs.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Sonic hedgehog complementary DNA clone sequence for the rhombic night adder, Causus rhombeatus, has been deposited in the Genbank database under accession number EU236145.

References

  1. Kochva, E. The origin of snakes and evolution of the venom apparatus. Toxicon 25, 65–106 (1987)

    Article  CAS  Google Scholar 

  2. Kochva, E. in Biology of the Reptilia Vol. 8 (eds Gans, C. & Gans, K. A.) 43–162 (Academic Press, 1978)

    Google Scholar 

  3. Jackson, K. The evolution of venom-delivery systems in snakes. Zool. J. Linn. Soc. 137, 337–354 (2003)

    Article  Google Scholar 

  4. Kardong, K. V. Protovipers and the evolution of snake fangs. Evolution 33, 433–443 (1979)

    PubMed  Google Scholar 

  5. Jackson, K. The evolution of venom-conducting fangs: insights from developmental biology. Toxicon 49, 975–981 (2007)

    Article  CAS  Google Scholar 

  6. Vidal, N. Colubroid systematics: Evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J. Toxicol. Toxin Rev. 21, 21–41 (2002)

    Article  Google Scholar 

  7. Jackson, K. & Fritts, T. H. Evidence from tooth surface morphology for a posterior maxillary origin of the proteroglyph fang. Amphibia-Reptilia 16, 273–288 (1995)

    Article  Google Scholar 

  8. Kardong, K. V. Evolutionary patterns in advanced snakes. Am. Zool. 20, 269–282 (1980)

    Article  Google Scholar 

  9. Kardong, K. V. The evolution of the venom apparatus in snakes from colubrids to viperids and elapids. Mem. Inst. Butantan 46, 105–118 (1982)

    Google Scholar 

  10. Cobourne, M. T. & Sharpe, P. T. Sonic hedgehog signaling and the developing tooth. Curr. Top. Dev. Biol. 65, 255–287 (2004)

    Article  Google Scholar 

  11. Fraser, G. J., Berkovitz, B. K., Graham, A. & Smith, M. M. Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition. Evol. Dev. 8, 446–457 (2006)

    Article  CAS  Google Scholar 

  12. Fraser, G. J., Graham, A. & Smith, M. M. Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. J. Exp. Zool. B 306B, 183–203 (2006)

    Article  CAS  Google Scholar 

  13. Yamanaka, A., Yasui, K., Sonomura, T. & Uemura, M. Development of heterodont dentition in house shrew (Suncus murinus). Eur. J. Oral Sci. 115, 433–440 (2007)

    Article  Google Scholar 

  14. Kuch, U., Muller, J., Modden, C. & Mebs, D. Snake fangs from the Lower Miocene of Germany: Evolutionary stability of perfect weapons. Naturwissenschaften 93, 84–87 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Fry, B. G. et al. Evolution of an arsenal: Structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics 7, 215–246 (2007)

    Article  Google Scholar 

  16. Vidal, N. et al. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C. R. Biol. 330, 182–187 (2007)

    Article  CAS  Google Scholar 

  17. Young, B. & Kardong, K. Dentitional surface features in snakes (Reptilia: Serpentes). Amphibia-Reptilia 17, 261–276 (1996)

    Article  Google Scholar 

  18. Frazzetta, T. H. Studies on the morphology and function of the skull in the Boidae (Serpentes). Part II. Morphology and function of the jaw apparatus in Python sebae and Python molurus . J. Morphol. 118, 217–296 (1966)

    Article  CAS  Google Scholar 

  19. Bogert, C. M. Dentitional phenomena in cobras and other elapids with notes on adaptive modifications of fangs. Bull. Am. Mus. Nat. Hist. 131, 285–357 (1943)

    Google Scholar 

  20. Cope, E. D. in US National Museum Annual Report for 1898 153–1270 (US Govt Print. Off., 1900)

    Google Scholar 

  21. Boulenger, G. A. Remarks on the dentition of snakes and on the evolution of the poison-fangs. Proc. Zool. Soc. Lond. 40, 614–616 (1896)

    Article  Google Scholar 

  22. Anthony, J. Essai sur l'evolution anatomique de l'appareil venimeux des Ophidiens. Ann. Sci. Nat. Zool. 17, 7–53 (1955)

    Google Scholar 

  23. Shayer-Wollberg, M. & Kochva, E. Embryonic development of the venom apparatus in Causus rhombeatus (Viperidae, Ophidida). Herpetologica 23, 249–259 (1967)

    Google Scholar 

  24. Kochva, E. Development of the venom gland and the trigeminal muscles in Vipera palaestinae . Acta Anat. 52, 49–89 (1963)

    Article  Google Scholar 

  25. Ovadia, M. Embryonic development of Duvernoy’s gland in the snake Natrix tessellata (Colubridae). Copeia 1984, 516–521 (1984)

    Article  Google Scholar 

  26. Gygax, P. Entwicklung, Bau und Funktion der Giftdrüsse (Duvernoy’s gland) von Natrix tessellata . Acta Trop. 28, 226–274 (1971)

    CAS  PubMed  Google Scholar 

  27. Buchtova, M. et al. Embryonic development of Python sebae - II: Craniofacial microscopic anatomy, cell proliferation and apoptosis. Zoology 110, 231–251 (2007)

    Article  Google Scholar 

  28. Reshef, R. Ontogenetic Mechanisms of Teeth and Oral Gland Development in Snakes - A Possible Contribution to the Understanding of Evolutionary Processes in Reptiles. PhD thesis, Univ. Tel-Aviv. (1994)

    Google Scholar 

  29. Reshef, R., Ovadia, M., Wollberg, M. & Kochva, E. Snake yolk sac as a site for in vivo organ incubation: a new method in the research of snake embryo development. J. Exp. Zool. 270, 538–546 (1994)

    Article  Google Scholar 

  30. Martin, H. Recherches sur le développement de l’appareil venimeux de la Vipera aspis . C. R. Assoc. Anat. 1, 56–66 (1899)

    Google Scholar 

Download references

Acknowledgements

We thank the following persons and institutions who helped us or contributed material used in this study: J. W. Arntzen, M. Brittijn, M. de Boer, R. van Deutekom, N. Dunstan, K. Van Egmond, P. L. Y. Fung, I. Gavrilov, W. Getreuer, J. Hanken, E. Heida, I. Ineich, T. de Jong, K. V. Kardong, M. Lautenbach, J. Losos, D. Millar, C. Pepermans, J. M. Richman, J. Rosado, R. de Ruiter, P. Schilperoord, M. M. Smith, S. Soubzmaigne, N. Vidal, E. M. Wielhouwer, J. Woltering, National Museum of Natural History Naturalis Leiden, Reptilezoo Serpo, Muséum National d'Histoire Naturelle Paris, AQIS, DEH, APCG and DWLBC (Australia). This work received funding from the following sources: a Toptalent grant from the Netherlands Organization for Scientific Research (NWO; F.J.V.), a Smart Mix grant from the Dutch government (M.K.R.), a Valorisation grant from the Dutch Technology Foundation (STW; M.K.R., F.J.V., B.G.F.), the Curatoren fund (F.J.V.), the LUSTRA fund (F.J.V.), the Australian Research Council and the Australian Academy of Science (B.G.F.), DEST-ISL (B.G.F.), Whitman College (K.J.), a NWO visitors grant (M.K.R., B.G.F.) and the Leiden University Fund (F.J.V.).

Author Contributions F.J.V.: study concept and design; embryo and skull collection, acquisition and processing; probe synthesis; in situ hybridizations; histology; figures; paper. J.F.A.: three-dimensional reconstructions, figures. K.J.: scanning electron microscopy. R.R.: study concept, ablation experiment, histology. E.K.: study concept, embryological data. K.V., I.v.d.B., M.v.A.: in situ hybridizations, histology. M.A.G.d.B.: probe design, in situ hybridizations. A.B.: Naja embryo collection. P.J.M.: supply of Naja material. B.G.F.: study concept, supply of Causus material. A.W.: provision of laboratory space. E.B., F.W.: morphometric analyses. M.K.R. (project leader): study concept and design, provision of funding and laboratory space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Richardson.

Supplementary information

Supplementary information

The file contains Supplementary Figures 1-7 and Supplementary Tables 1-6. Figure 1 shows a summary of our results. The other figures include additional shh expression data, additional histology data (including our ablation experiment), the results of our scanning electronic microscopy, and the linear regression analyses of the ontogenetic allometric measurements of the developing front fangs. The 6 tables display all material used in this study, and the results of our statistical analyses of the ontogenetic allometry. (PDF 4872 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonk, F., Admiraal, J., Jackson, K. et al. Evolutionary origin and development of snake fangs. Nature 454, 630–633 (2008). https://doi.org/10.1038/nature07178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07178

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing